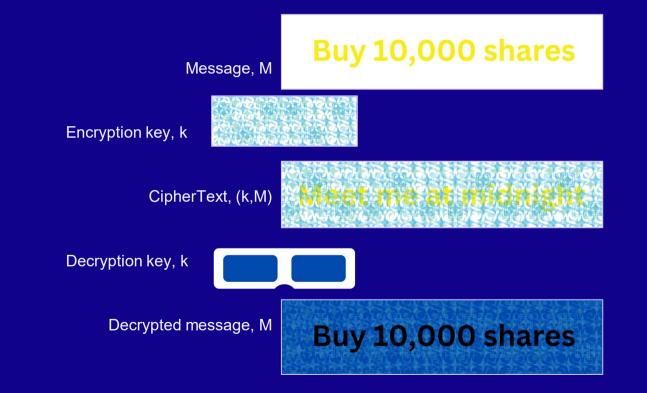
Quantum Computing for Business Executives

13 February 2023 - 9th ETSI-IQC Quantum-Safe Cryptography Workshop - Michele Mosca

evolution 🔿



How can we entrust information and tasks to untrusted systems?

Quantum Changes what is "Secure"

Quantum Changes Everything

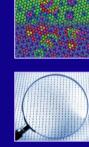
Key Establishment Symmetric Encryption

Authentication

New Paradigm

Each classical configuration has a corresponding quantum amplitude

Number of bits	Possible configurations	What are the possible configurations?
1	2	(O), (O)
2	2 ² = 4	
8 = 1 byte	2 ⁸ = 256	(222) (2222) (2222) (2222) (222) (2222) (2222) (2222) etc
10	2 ¹⁰ = 1024	Far too many to show
1,000,000 = 1 megabit	2 ^{1,000,000}	


New Paradigm

Number of qu bits	Amplitudes to track	Classical bits to keep track of with non-zero amplitudes
1	2	2
2	2 ²	2 ²
3	2 ³	$2^3 = 8 \rightarrow 1$ byte
10	2 ¹⁰	2^{10} = 1,024 \rightarrow ~ 1 kilobit
20	2 ²⁰	2 ²⁰ = 1,048,576 → ~ 1 megabit
40	2 ⁴⁰	2 ⁴⁰ = 1,099,511,627,776 → ~ 1 terabit

If we use *k* bits of precision to store a single amplitude, we need approximately $k 2^N$ bits to describe the state of *N* qubits: **exponential** growth (in the number of qubits)

Quantum brings immense power

Material and pharmaceutical design

Sensing and measuring

Secure communication

New innovations

Are You Quantum Ready?

- Do you understand what the
 technologies are capable of and their readiness levels?
- Do you understand how the new capabilities impact your organization or sector?
- Do you have a plan to benefit from the disruptive capabilities?
- Do you have a plan to mitigate any quantum threats?

Execution is 90% Planning 10% Doing

- Kathleen Taylor, Chair of the Board, RBC

Classical Paradigm

Encrypting and authenticating is easy (e.g. multiplying numbers) Code breaking (e.g. factoring large numbers) is hard

Quantum Paradigm

Encrypting and authenticating is easy

Breaking today's public key cryptography (i.e. factoring large numbers, finding discrete logarithms is EASY

Vulnerabilities are exploited in many ways

- (D)DOS
- Ransomware
- Spyware
- Identify theft
- Cryptojacking
- Stolen data
- Data leaks
- Shutdown of infrastructure
- Etc.

Vulnerabilities, from bad to worse

Crypto implementation errors

Platform implementation errors

Admin errors

Fundamentally vulnerable cryptography

Platform design errors

Corrupt admin

Corrupt users

User errors

When do we need to start?

As you plan your migration to quantum-safe protocols, consider:

Security shelf-life (x years) Migration time (y years) Collapse time (z years)

Migration time	Security shelf-life
Collapse time	

If x+y approaches z, act now!

Plan for security and resilience

Challenge

Critical infrastructure may fail and no quick fix exists

Data must remain confidential over time (record now, decrypt later)

Rushed preparations are expensive, disruptive, vulnerable to mistakes

Society could lose trust in tools and institutions underpinning our digital economy

Quantum computing potential is restricted due to risk

Upgraded algorithms protecting critical systems can be broken mathematically

Mitigation Make sure y<z Make sure x+v<z Avoid the need to compress y; All of the above All of the above All of the above Agility, defense-in-depth, methods not susceptible to

cryptanalysis

Our luck may run out

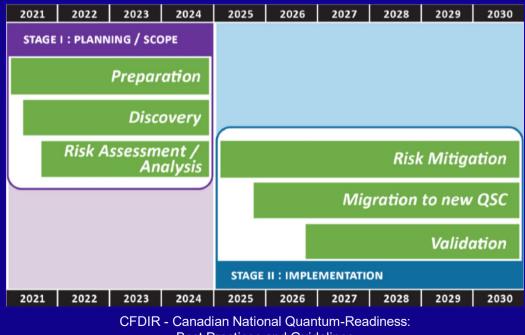
The cryptographic "breaks" in the modern era have generally

- not been feasible in the short term (so there was time to react), or
- not been on widely deployed algorithms.

The stakes have grown astronomically, and continue to grow.

QRA Methodology

- **Phase 1:** Document current cryptographic protection
- **Phase 2:** Research and estimate timelines for both quantum computers and quantum-safe cryptography
- Phase 3: Estimate collapse time, "z"
- **Phase 4:** Identify asset lifetime, "x", and quantum-safe transformation time, "y"
- Phase 5: Calculate quantum risk,


○ (x + y > z ?)

• **Phase 6:** Prioritize you quantum-safe migration steps

CFDIR Quantum Safe Journey

Quantum Readiness Program Timeline

Best Practices and Guidelines

Must also Prepare Future Platforms and Tools

Forbes

INNOVATION

Practical Homomorphic Encryption: Three Business Use Cases

Ellison Anne Williams Forbes Councils Member Forbes Technology Council COUNCIL POST | Membership (Fee-based)

Aug 10, 2020, 08:50am EDT

QUANTUM-PROOFING THE BLOCKCHAIN

Vlad Gheorghiu, Sergey Gorbunov, Michele Mosca, and Bill Munson

University of Waterloo

November 2017

A BLOCKCHAIN RESEARCH INSTITUTE BIG IDEA WHITEPAPER

WØRLD ECØNOMIC FORUM In collaboration with Deloitte Transitioning to a Quantum-Secure Economy WHITE PAPER SEPTEMBER 2022

Collapse Time Impacted by:

- best known algorithms for breaking today's public key cryptography
- best known optimizations to these algorithms, including optimizations customized to specific architectures

- architecture details of quantum computing platforms (like connectivity)
- best known fault-tolerant quantum error correction
- currently available tools and their performance benchmarks, like error rates

Migration time

Security shelf-life

Collapse time

Example of Progress

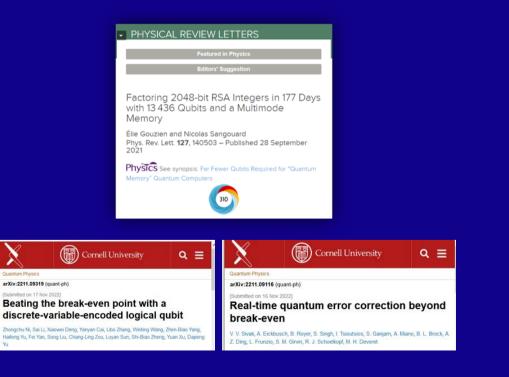
=

Using state-of-the-art "conventional" surface-code methods, with reasonable assumptions

() Uantum

How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits

Craig Gidney¹ and Martin Ekerå^{2,3}


¹Google Inc., Santa Barbara, California 93117, USA ²KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden ³Swedish NCSA, Swedish Armed Forces, SE-107 85 Stockholm, Sweden

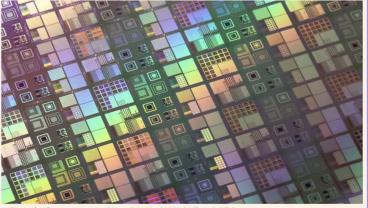
Published:	2021-04-15, volume 5, page 433
Eprint:	arXiv:1905.09749v3
Doi:	https://doi.org/10.22331/q-2021-04-15-433
Citation:	Quantum 5, 433 (2021).

GET FULL TEXT PDF

READ ON ARXIV VANITY

Less "conventional" alternatives

Breaking RSA with near-term devices??


FINANCIAL TIMES

COMPANIES TECH MARKETS CLIMATE OPINION WORK & CAREERS LIFE & ARTS HTSI

Quantum technologies + Add to myFT

Chinese researchers claim to find way to break encryption using quantum computers

Experts assess whether method outlined in scientific paper could be a sooner-thanexpected turning point in the technology

A silicon wafer of quantum computer chips made by Hitachi $\ensuremath{\mathbb{C}}$ Yoshio Tsunoda/AFLO

https://www.ft.com/content/b15680c0-cf31-448d-9eb6-b30426c29b8b

nature

Explore content V About the journal V Publish with us V

vith us 🛩 Subscribe

nature > news > article

NEWS 06 January 2023

Are quantum computers about to break online privacy?

A new algorithm is probably not efficient enough to crack current encryption keys – but that's no reason for complacency, researchers say.

Davide Castelvecchi

https://www.nature.com/articles/d41586-023-00017-0

Status of Quantum Computer Development

Bundesamt für Sicherheit in der Informationstechnik

Studie: Entwicklungsstand Quantencomputer V1.2

Datum 18.08.2020

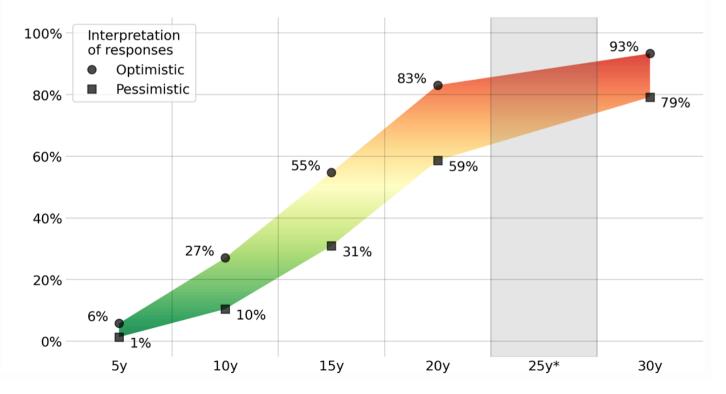
Next Major Milestone: Fault-Tolerant Logical Qubits

IBM Just Committed to Having a Functioning 1,000 Qubit Quantum Computer by 2023

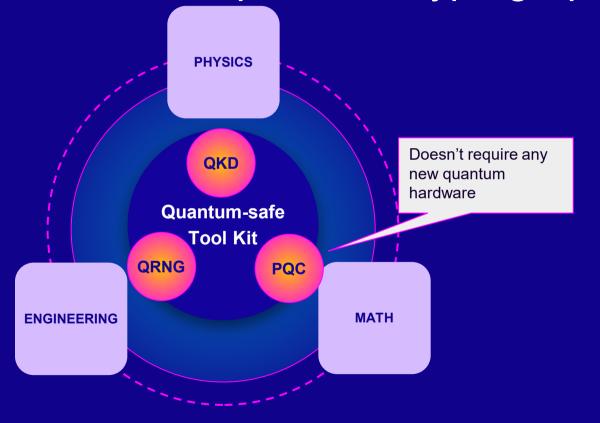
David Nield 9/17/2020

0 9 0 8

We're still a long way from realising the full potential of quantum computing, but scientists are making progress all the time – and as a sign of what might be coming, IBM now says it expects to have a 1,000 qubit machine up and running by 2023.


n trap at the heart of lonQ's quantum com

© IBM



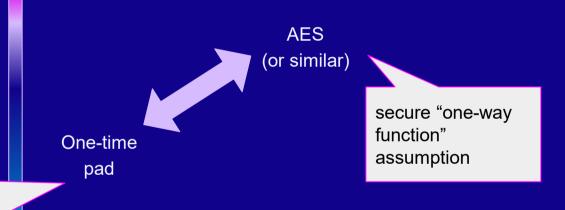
2022 OPINION-BASED ESTIMATES OF THE CUMULATIVE PROBABILITY OF A DIGITAL QUANTUM COMPUTER ABLE TO BREAK RSA-2048 IN 24 HOURS, AS FUNCTION OF TIMEFRAME

Estimates of the cumulative probability of a cryptographically-relevant quantum computer in time: range between average of an optimistic (top value) or pessimistic (bottom value) interpretation of the estimates indicated by the respondents. [*Shaded grey area corresponds to the 25-year period, not considered in the questionnaire.]

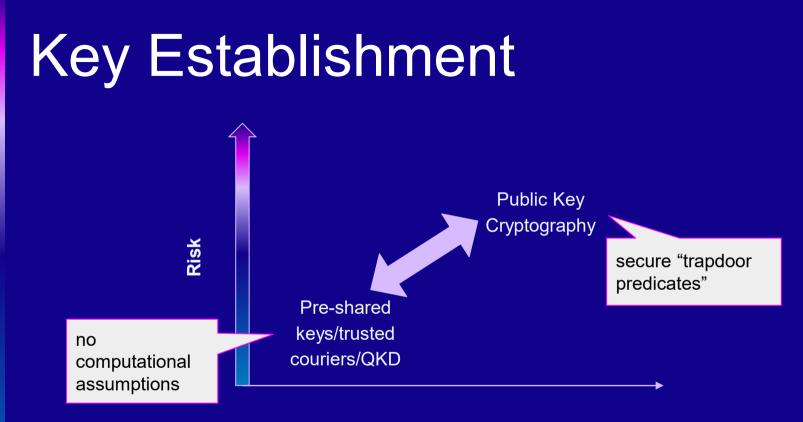
Tools: "Post-quantum" and quantum cryptography

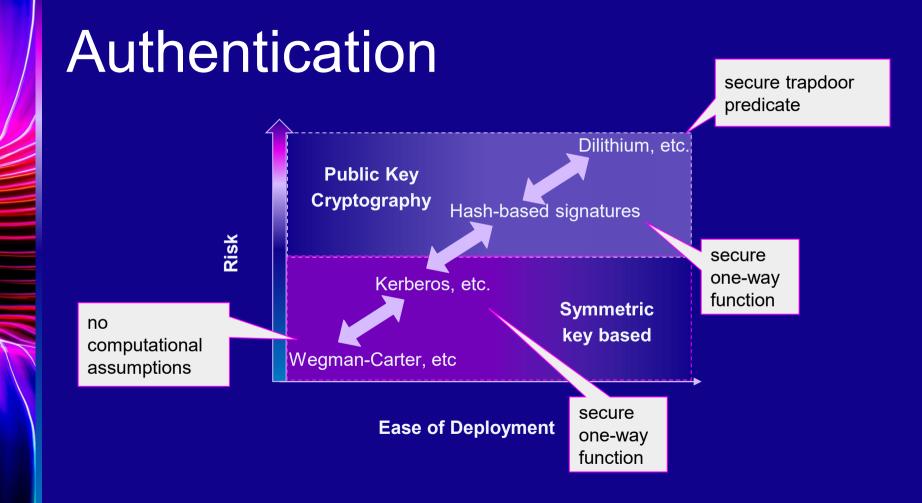
True Randomness

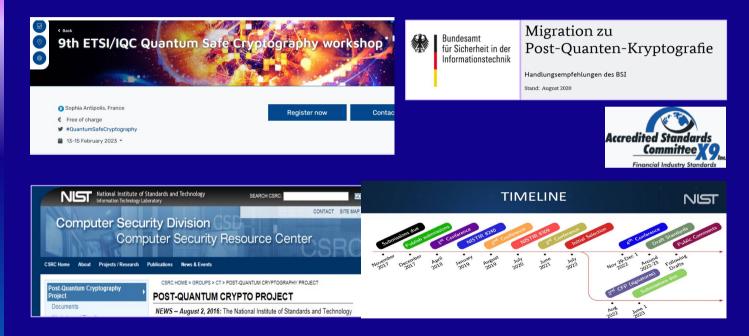
https://evolutionq.com/qrng-report-2021.html


New quantum feature: Eavesdropper detectability

Enables key establishment without a computational assumption. Known as Quantum Key Distribution (QKD).


Symmetric Encryption


no computational assumption; i.e. "information theoretically secure" or "unconditionally secure"


Ease of Deployment

Ease of Deployment

Ongoing Work to Develop Standards and Certifications for These Tools

Call to Action

- Establish quantum-readiness team within your organization with broad executive support.
- Leverage available "best practices" and contribute new findings back to the community.
- Support the vendor ecosystem we will all rely on. Testing solutions. Deploying sooner where risk equation calls for it.
 - Engage with broader ecosystem (supply chain, third parties, standards, etc.) to identify key challenges that need to be tackled together.

Thank You!

Comments, questions and feedback are very welcome.

Michele Mosca Professor, Faculty of Mathematics Co-Founder, Institute for Quantum Computing, University of Waterloo <u>www.iqc.ca/~mmosca</u> <u>mmosca@uwaterloo.ca</u>

CEO, evolutionQ Inc. @evolutionQinc michele.mosca@evolutionq.com

Co-founder, softwareQ Inc. softwareq.ca

Cybersecurity Risk

The World **Economic Forum** cites cybercrime and cyber insecurity as one of the top 10 global Risks in both the short and longterm.

2 years

3

6

7

8

9

Cost-of-living crisis

- 2 Natural disasters and extreme weather events
 - Geoeconomic confrontation
- 4 Failure to mitigate climate change
- 5 Erosion of social cohesion and societal polarization
 - Large-scale environmental damage incidents
- Failure of climate change adaptation
- Widespread cybercrime and cyber insecurity
- Natural resource crises
- 10 Large-scale involuntary migration

10 years Failure to mitigate climate change 2 Failure of climate-change adaptation 3 Natural disasters and extreme weather events Biodiversity loss and ecosystem collapse 4 5 Large-scale involuntary migration Natural resource crises 6 7 Erosion of social cohesion and societal polarization Widespread cybercrime and cyber insecurity 8

WØRLD ECØNOMIC

FORUM

Geoeconomic confrontation

9

10 Large-scale environmental damage incidents