

ETSI/IQC Quantum Safe Cryptography Event

The effects of Dilithium on QUIC's performance

Panos Kampanakis

02/14/2023

Background: Dilithium's Impact on TLS performance

- PQ key exchange will affect handshakes, but not detrimentally [CECPQ2] [iacr19-1447] [CON20]
- Authentication will have more impact [NDSS20] [CF21]
- Size of "authentication data" increases significantly [CSCML22]

Takeaway: Slowdowns by Dilithium or any other PQ signature algorithm...

Intuitions about Dilithium's Impact on QUIC?

• QUIC's PQ

4

- keys grow to 1-2KB (w. Kyber) and
- "authentication data" to 17+ KB.
- Higher total loss probability [iacr19-1447]
- Extra Round-trip due to the ~4KB Amplification Window [CSCML22]
- Extra Round-trip due to the ~15KB Initial Congestion Window [CON20]
- Unacceptable performance at the "tails" for >10KB of "authentication data" [CF21]
- Amplification Reflection risk

QUIC's Amplification Protection

Preliminary Experimental Results - QUIC connection time (60ms RTT)

QUIC connect time (ms) - Connect scenario - 60ms RTT

8

Solution Options

- Artificially inflate the Client request
- Trim down "authentication data" by
 - caching CA certificates [CSCML22] [tls-scas] or
 - using session resumption
- Increase the Amplification Protection Window
 - at the cost of increasing the amplification factor
- Use Address validation tokens

About Address Validation Tokens

10

11

QUIC will see performance slowdowns from Dilithium or other PQ signatures.

We need to research and decide what to do with QUIC's

- Size of the authentication data
- Amplification Protection
- Initial Congestion Window

12

Thank you!

kpanos@amazon.com

