

ETSI/IQC Quantum Safe Cryptography Event

HYBRID AUTHENTICATED KEY EXCHANGES

STATUS-QUO, NOVEL CONSTRUCTIONS, AND APPLICATIONS TO LONG-RANGE QUANTUM-SAFE NETWORKS

Christoph Striecks

14/02/2023

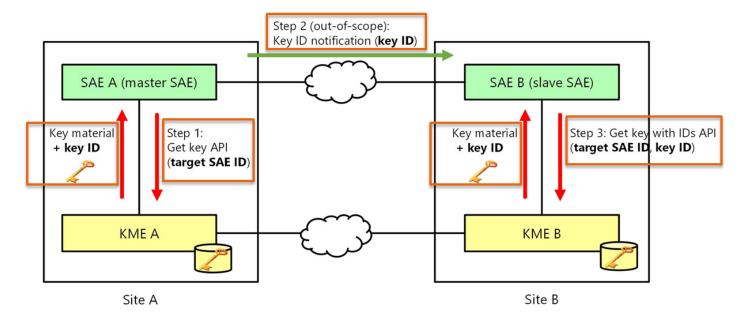
Joint work with S. Ramacher, L. Perret, S. Bruckner

CENTRAL TOPICS TO BE COVERED

Limitations of QKD in long-range quantum-safe networks

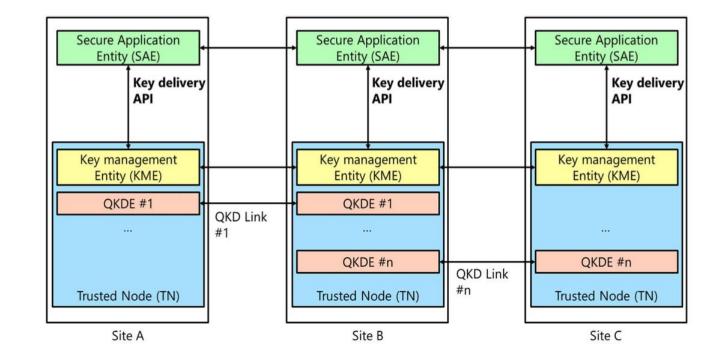
Hybridization for secure long-range quantum-safe networks (combines QKD with PQC)

QUANTUM KEY DISTRIBUTION


Establishing Shared Keys with Perfect Secrecy

QUANTUM KEY DISTRIBUTION (QKD)

- Main features:
 - **Perfectly** secret key distribution
 - Between any two endpoints
 - Terrestrially or via space



Key Establishment Scheme. Source: ETSI QKD GS 014 v1.1.1

QKD NETWORKS

- Gaps to solve:
 - QKD links have a limited range (depending on technology and desired key bit-rates)
- Needs:
 - **Trusted nodes** to bridge longer distances
 - **Pre-shared keys** to authenticate link-to-link nodes

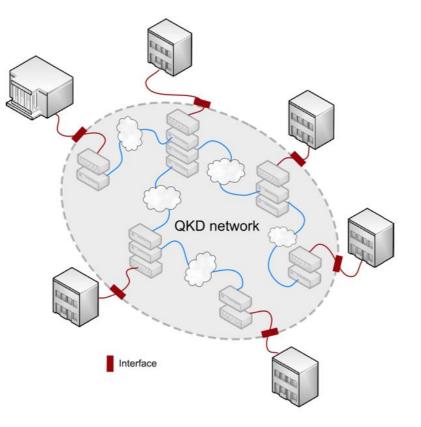
QKD Network connecting different sites. Source: ETSI GS QKD 014 V1.1.1

LIMITATIONS FOR LONG-RANGE QKD NETWORKS

- "QKD is [...] a solution for transforming a non-confidential authenticated channel into a confidential authenticated one." (Huttner et al.)
- 2. Trusted nodes are needed for longrange QKD

Long-Range QKD without Trusted Nodes is Not Possible with Current Technology

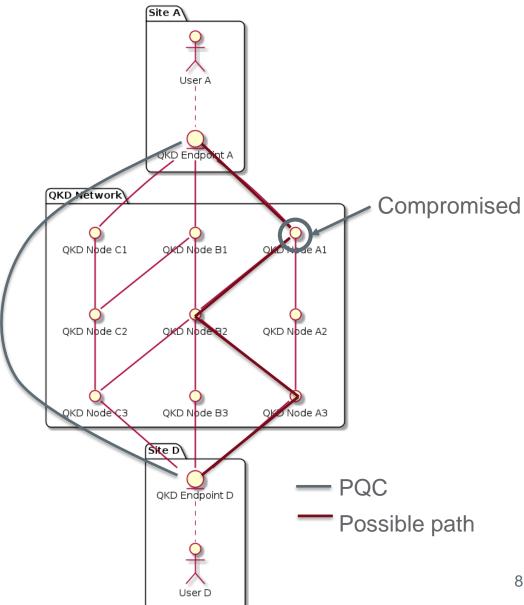
Authors:


Bruno Huttner, ID Quantique, Switzerland[†]; Romain Alléaume, Telecom Paris - Institut Polytechnique de Paris, France; Eleni Diamanti, Sorbonne University, CNRS - LIP6, France; Florian Fröwis, ID Quantique Europe, Austria; Philippe Grangier, Université Paris-Saclay, IOGS, CNRS, France; Hannes Hübel, Austrian Institute of Technology, Austria; Vicente Martin, Center for Computational Simulation / ETSIInf. Universidad Politécnica de Madrid, Spain; Andreas Poppe, Austrian Institute of Technology, Austria; Joshua A. Slater, QuTech - Delft University of Technology, The Netherlands ; Tim Spiller, University of York, UK; Wolfgang Tittel, QuTech and Kavli Institute of Nanoscience, Delft Technical University, The Netherlands; Department of Applied Physics, University of Geneva, Switzerland; Schaffhausen Institute of Technology in Geneva, Switzerland; Benoit Tranier, ThalesAleniaSpace, France; Adrian Wonfor, University of Cambridge, UK; Hugo Zbinden, Department of Applied Physics, University of Geneva, Switzerland.

Source: https://arxiv.org/pdf/2210.01636.pdf

LIMIT 1: END-TO-END AUTHENTICITY

- Problem:
 - End-point (and node-to-node) authentication via pre-shared keys (PSKs) is only link-to-link
 - Authentication is **not transitive**
- One solution:
 - Unique PSKs for each entity that requires authentication (results in N^2 PSKs for N entities)
 - Requires **offline key exchanges** (e.g., via a "trusted courier")
 - Manageable on a QKD device basis (but inefficient when the network gets larger)



QKD network. Source: ETSI GS QKD 002 V1.1.1

LIMIT 2: TRUSTED NODES

- Problem:
 - Nodes on the QKD path learn secret keys (need to be trusted)
 - What happens if one node is compromised?
- One solution:
 - **Hybridization**, i.e., combine with postquantum secure (PQC) mechanisms
 - Establishes end-to-end confidentiality (but cannot guarantee ITS as trade-off)

HYBRID AUTHENTICATED KEY EXCHANGES

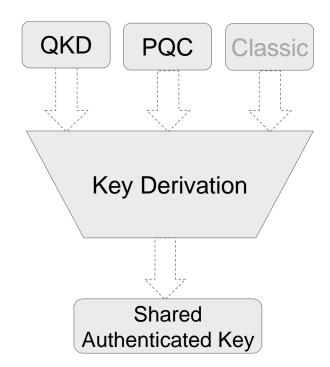
Resilient Key Exchanges with End-to-End Security

PRIMITIVE: HYBRID AUTHENTICATED KEY EXCHANGE (HAKE)

- Main features:
 - Protocol between **two entities**
 - Establishes authenticated shared key

- Goals:
 - Authenticity of both entities
 - Confidentiality of exchanged messages
 - Even more: resilient keys (forward secrecy and healing of channels)

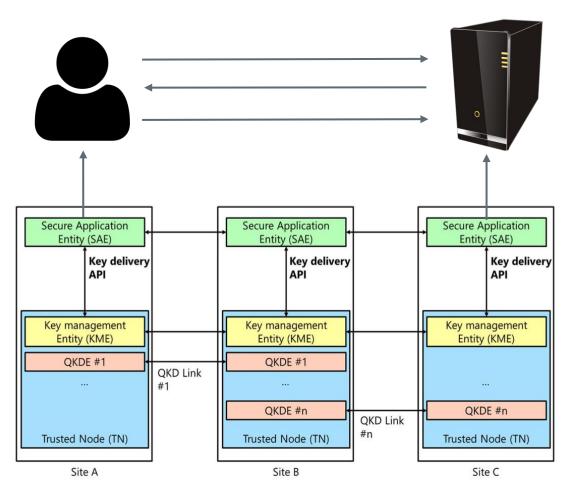
- Authentication via:
 - PSKs, certificates, or passwords
- (Ephemeral) keys via:
 - Key encapsulation mechanisms and QKD keys



HAKE IMPLEMENTATION: MUCKLE

- Combining:
 - Keys from QKD layer
 - PQC key encapsulation mechanism
 - Optional: keys from classical cryptography (helps for migration to quantum-safe systems)
 - **PSK** for authentication
- Benefits:
 - End-to-end authentication and confidentiality (relying on PSKs)
 - **Resilience** (e.g., if PQC fails, guarantees for QKD still hold)
 - "Backwards-compatibility" (i.e., add a PQC/QKD layer to existing classical one)

Many a Mickle Makes a Muckle: A Framework for Provably Quantum-Secure Hybrid Key Exchange


Benjamin Dowling¹, Torben Brandt Hansen², Kenneth G. Paterson¹

OUR PROPOSAL: MUCKLE+

- Features:
 - "Muckle with PQC end-to-end authentication" instead of PSKs
 - Requires only hash functions and ciphers:
 - XMSS: NIST SP 800-208
 - SPHINCS+ (selected for standardization), Picnic (3rd round candidate of NIST PQC)
- Trade-offs:
 - Enables (end-to-end) services with certificates
 - Computational security
 - Optimized for **long-range quantum-safe networks** such as the EuroQCI (without PSKs)
- PoC implementation:
 - Available (with experimental results), contact us if interested

QKD Network connecting different sites. Source: ETSI GS QKD 014 V1.1.1

ON POTENTIAL QDK/PQC END-TO-END HYBRIDIZATION OPTIONS (UPDATED: 15/2/2023)

	Confidentiality	Authenticity
QKD	Perfect (trusted nodes)No resilience	Perfect (N^2 unique PSKs)No resilience
QKD + PQC Signatures	 Computational (from ciphers, trusted nodes) No resilience 	 Computational (from hash function or ciphers) No resilience
QKD + PQC Encryption	 Computational Resilient if PQC fails, perfect (trusted nodes) if QKD fails, computational 	 Perfect (N^2 unique PSKs) No resilience
QKD + PQC (Encryption/Signatures)	 Computational Resilient if PQC fails, computational (from ciphers if PQC signatures are from hash functions or ciphers) if QKD fails, computational 	 Computational (from hash function or ciphers possible) No resilience
PQC (Encryption/Signatures)	ComputationalNo resilience	 Computational (from hash function or ciphers possible) No resilience


MIGRATION TO QKD/PQC HYBRID SYSTEMS (CRYPTOGRAPHICALLY)

 Build agile cryptographic systems; use hybrid approach (QKD/PQC)

Running system

 Add QKD/PQC to your classically secured cryptosystem if possible as an extra layer (via hybrid approach), then switch off classical layer

Source: https://www.etsi.org/deliver/etsi_tr/103600_103699/103619/01.01.01_6 _____0/tr_103619v010101p.pdf

THANK YOU!

Supported by EU DIGITAL project QCI-CAT (PID 101091642) and Austrian national KIRAS project QKD4GOV

/////

Christoph Striecks

Scientist Security & Communication Technologies Center for Digital Safety & Security

AIT Austrian Institute of Technology GmbH

Giefinggasse 4 | 1210 Vienna | Austria T +43 50550-4113 | M +43 664 8251141 christoph.striecks@ait.ac.at | www.ait.ac.at