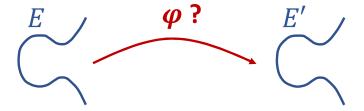
An efficient key recovery attack on SIKE

(and the future of isogeny-based cryptography) j.w. Thomas Decru



9th ETSI/IQC Quantum Safe Cryptography Event, 15 February 2023

SIKE: Supersingular Isogeny Key Encapsulation

> certain kind of map between elliptic curves

- in general: very hard to find such a map explicitly, even for quantum computers
- problem lies at the root of isogeny-based cryptography

1997—2006: prehistory of isogeny-based cryptography

main legacy: CRS key exchange (inefficient drop-in for Diffie-Hellman)

2009: Childs, Jao and Soukharev find sub-exponential time quantum attack on CRS

2011: Jao and De Feo respond with Supersingular Isogeny Diffie-Hellman (SIDH)

2016: SIKE (= concrete instance of SIDH) submitted to NIST PQ Crypto competition

- → ✓ ➤ best attacks (until 2022): exponential
 - > good efficiency
 - > very low bandwidth requirements
 - diversification: does not rely on "noisy linear algebra"
 - > within expertise of existing ECC community

1997—2006: prehistory of isogeny-based cryptography

main legacy: CRS key exchange (inefficient drop-in for Diffie-Hellman)

2009: Childs, Jao and Soukharev find sub-exponential time quantum attack on CRS

2011: Jao and De Feo respond with Supersingular Isogeny Diffie-Hellman (SIDH)

2016: SIKE (= concrete instance of SIDH) submitted to NIST PQ Crypto competition

 \longrightarrow **x** \triangleright isogeny-based cryptography = exotic new field

> impure isogeny problem

1997—2006: prehistory of isogeny-based cryptography

main legacy: CRS key exchange (inefficient drop-in for Diffie-Hellman)

2009: Childs, Jao and Soukharev find sub-exponential time quantum attack on CRS

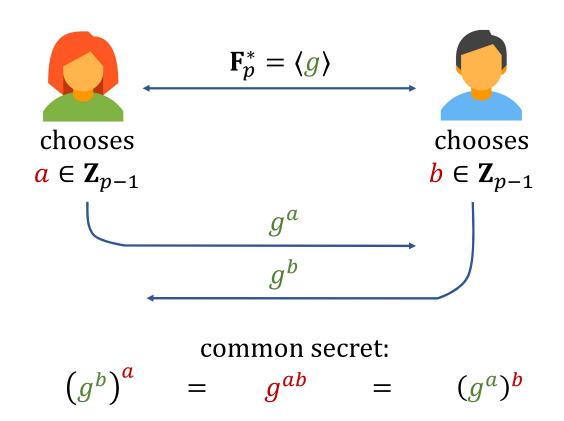
2011: Jao and De Feo respond with Supersingular Isogeny Diffie-Hellman (SIDH)

2016: SIKE (= concrete instance of SIDH) submitted to NIST PQ Crypto competition

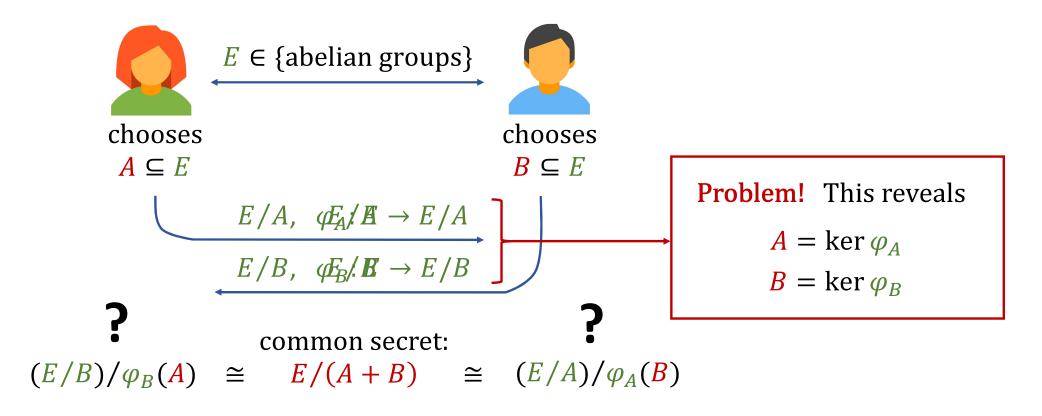
2019: SORE HOLVerneels and treasplanted filmed 14st

± two weeks later: we find an efficient break of SIKE

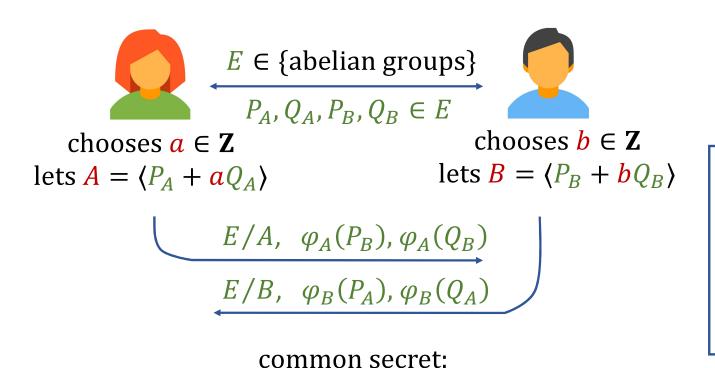
... quickly followed by Maino—Martindale, Wesolowski, Robert who show that SIDH cannot be (easily) reanimated


Screenshot from run on SIKEp434 targetting NIST level 1 security:

```
Glue-and-split! This is most likely the secret digit.
Determination of the 131th ternary digit. We are working with 2^13-torsion.
Testing digit 0
Testing digit 1
Glue-and-split! This is most likely the secret digit.
Determination of the 132th ternary digit. We are working with 2^8-torsion.
Testing digit 0
Glue-and-split! This is most likely the secret digit.
Determination of the 133th ternary digit. We are working with 2^8-torsion.
Testing digit 0
Testing digit 1
Testing digit 2
Glue-and-split! This is most likely the secret digit.
Determination of the 134th ternary digit. We are working with 2^5-torsion.
Testing digit 0
Testing digit 1
Testing digit 2
Glue-and-split! This is most likely the secret digit.
Bridging last gap took 1.520
Bob's secret key revealed as 33614536804276782728832427056644389909023766517033435805828014920
Altogether this took 643.860 seconds.
```

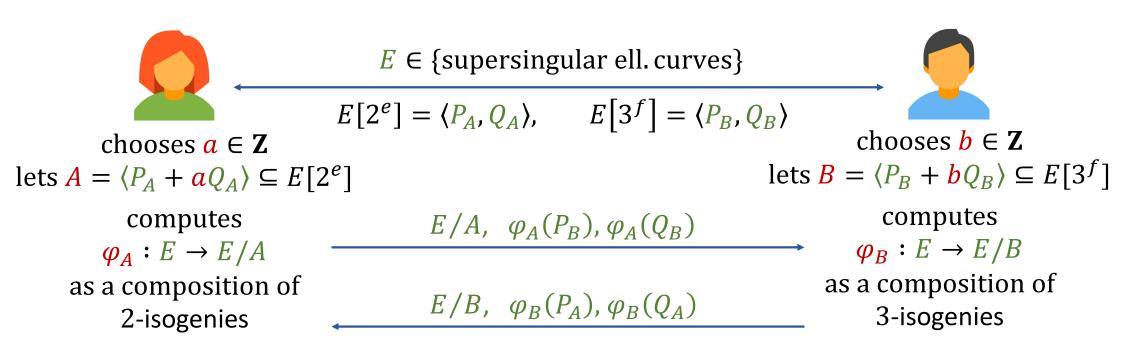

Average timings on single core using 10-year old PC:

> SIKEp**300** (NIST level 3): ≈ 300 minutes


Classical Diffie-Hellman (1976):

Jao, De Feo 2011: can we do Diffie-Hellman with subgroups and quotients?

Jao, De Feo 2011: can get around this by using 'auxiliary points'

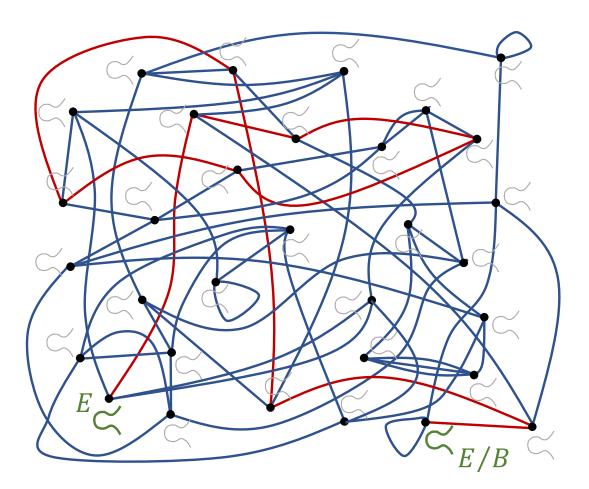

 $(E/B)/\varphi_B(A) \cong E/(A+B) \cong (E/A)/\varphi_A(B)$

Fact: Alice can compute

$$\varphi_B(A) = \varphi_B(\langle P_A + aQ_A \rangle)$$

as $\langle \varphi_B(P_A) + a\varphi_B(Q_A) \rangle$

(and likewise for Bob).


Jao, De Feo 2011: concrete proposal (high-level)

common secret: *j*-invariant of

$$(E/B)/\varphi_B(A) \cong E/(A+B) \cong (E/A)/\varphi_A(B)$$

We target Bob's secret isogeny $\varphi_B: E \to E/B$, which can be viewed as a secret walk

in the 3-isogeny graph: can be shown to have rapid mixing

Moweverukiey recoveryg:

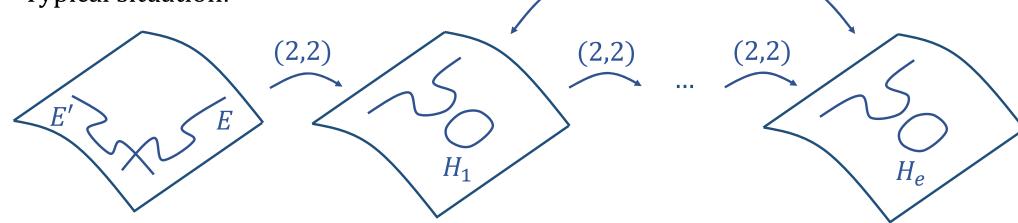
amounts todischings is hable from a randomicus je, so when he risogeny is hard

E, $E/B(\varphi_B(P_A), \varphi_B(Q_A))$

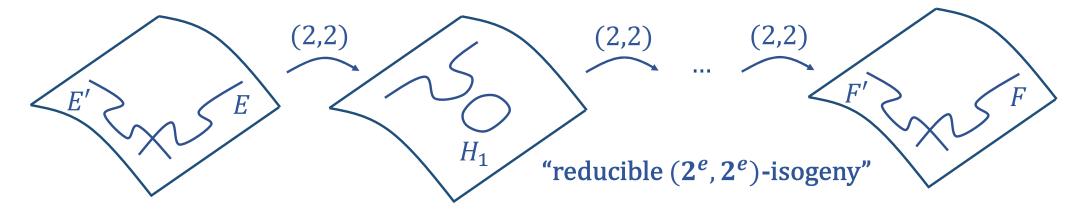
auxiliary points make for an impure isogeny problem

Main observation:

The auxiliary points $\varphi_B(P_A)$, $\varphi_B(Q_A)$ allow to consider the subgroup


The group Γ is isomorphic to $\frac{\mathbf{Z}}{2^e\mathbf{Z}} \times \frac{\mathbf{Z}}{2^e\mathbf{Z}}$.

What happens if we take the quotient $(E \times E')/\Gamma$?

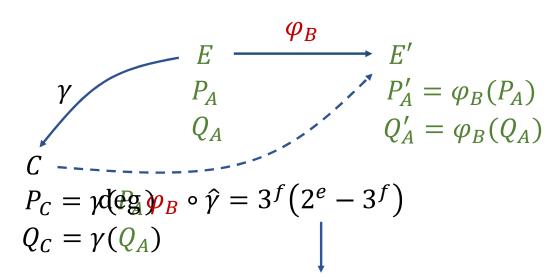

- \triangleright composition of (2, 2)-isogenies
- > technicality swept under the rug: quotient does not always make sense

jacobians of genus-2 curves

Typical situation:

However, in very exceptional situations:

Kani's theorem from 1997 characterizes reducibility.

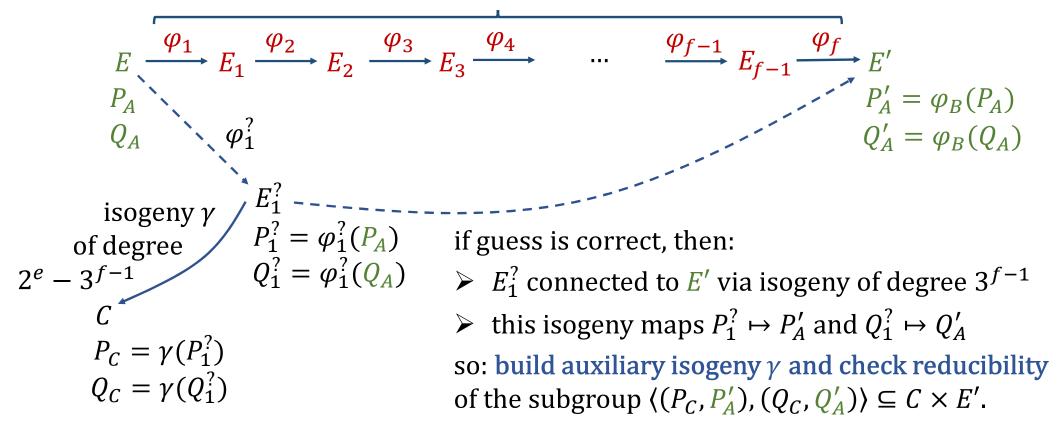

In our case it (roughly) says:

a
$$(2^e, 2^e)$$
-isogeny $E \times E' \to (E \times E')/G$ is reducible
$$\emptyset$$

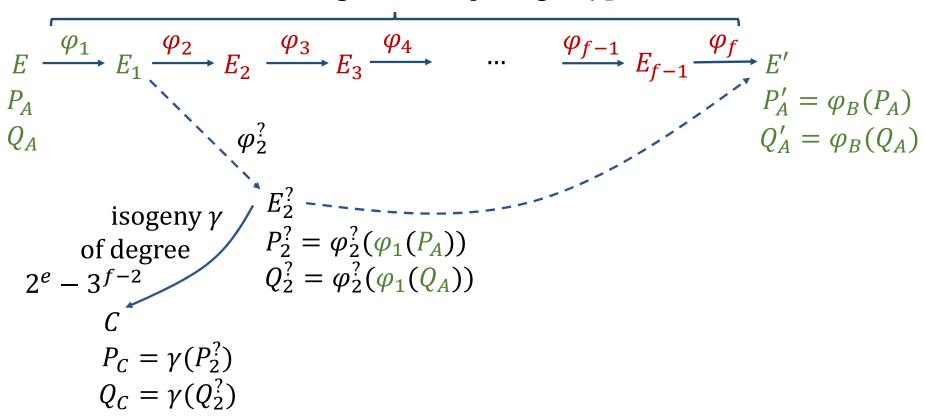
$$G = \langle (P_A, \psi(P_A)), (Q_A, \psi(Q_A)) \rangle$$
 with $\psi: E \to E'$ a degree $r(2^e - r)$ -isogeny (for some r)

This **resembles our situation**: we have $\Gamma = \langle (P_A, \varphi_B(P_A)), (Q_A, \varphi_B(Q_A)) \rangle$ but $\deg \varphi_B = 3^f$ is not of the form $r(2^e - r)$...

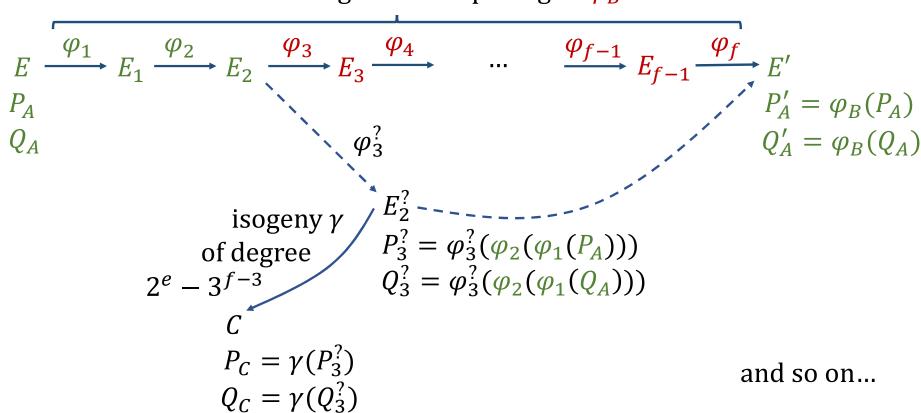
Strategy: force reducibility


 \triangleright Construct auxiliary isogeny γ of degree $c=2^e-3^f$ (assume positive)

- \triangleright By Kani's theorem, the subgroup $\langle (P_C, P_A'), (Q_C, Q_A') \rangle$ of the desired durible
- \triangleright Key idea: if P'_A , Q'_A were not the images of P_A , Q_A under a degree-3 isogeny, then with overwhelming probability this does not result in a reducible subgroup!


Leads to the following candidate-method for unveiling Bob's secret walk:

secret 3-isogenies composing to φ_B


Leads to the following candidate-method for unveiling Bob's secret walk:

secret 3-isogenies composing to φ_B

Leads to the following candidate-method for unveiling Bob's secret walk:

secret 3-isogenies composing to φ_B

4. What's next for isogeny-based crypto?

Conclusions for isogenies:

> SIDH is dead, despite having withstood 11 years of cryptanalysis

```
plea for hybrid and _____ are we rushing things? ____ (also Rainbow was broken early 2022)
```

- no practical consequences (not in pipeline for deployment)
- finding isogenies remains a hard problem

way to rediversify post-quantum cryptography?

other schemes such as CSIDH, CSI-FiSh, SQISign, ... are unaffected

next big thing in isogeny-based crypto (most compact signatures)

Questions?

Thanks for listening!