

ETSI NFV Conference

Evolving NFV towards the Next Decade Celebrating the 10th Anniversary of ETSI NFV

NFV Release 6 Summary of Proposals

Uli Kleber, Technical Manager

07/03/2023

- Overview of proposals
- Decision process
- Reminder: Intended Schedule
- Presentation of first set of features

Overview Release 6 proposals

4 groups of proposals:

- A. MANO API enhancements (5 input proposals) Probably 1 in recommendations
 - A.5 Less imperative APIs
- B. MANO Capabilities and general topics (9 input proposals) 1 feature ready, 1 small enhancement in discussion
 - B.7 Physical Infrastructure Manager
 - B.9 Latency aspects for VNF deployment
- C. Infrastructure and technologies (5 input proposals)
 3 features ready
 - C.1 New Infrastructure
 - C.2 New application virtualization forms
 - C.3 Deterministic communication technologies
- D. Processes and structures (4 input proposals) Will probably not create features, but changed working methods
 - D.4 Base MANO APIs on Open Source

Decision process

- Brainstorming sessions during NFV#39 and NFV#40
 Proposals were very different in level of detail and in form;
 Need more open discussion than is possible in TSC
- EVE working group is tasked to improve proposals:
 - Collect more details from authors
 - Identify overlaps and merge where appropriate
 - Review feature proposal templates
 - Provide a recommendation

Overview and current state on ETSI Etherpad:

https://pad-private.etsi.org/mypads/?/mypads/group/isg-nfv-rel6-nl1qk3ch/pad/view/overview-proposals-331rk3dh

- TSC will approve features Most features will require new studies or specifications
- ISG will approve new work items derived from the features

Intended Schedule

Year			2021					2022							2023				2024				2025								
Month		1	3	5	7	9	11	1	3	5	7	9	11	1	3	5	7	9	11	1	3	5	7	9	11	1	3	5	7	9	11
R5	Info																														
	Stage 1/2															[
	Stage 3																														
	Testing																														
	(stage 4)																														
	Info																														
R6																	-		-												
	Stage 1/2																														
																														<u> </u>	
	Stage 3																													<u> </u>	
																															_
	Testing																										1	1	1		
	(stage 4)																														

Proposal C.1 New Infrastructure

Scope

New types of infrastructure and telecom resources, infrastructure at "new" (also extreme) locations and from providers (Hyperscalers) other than the Service Provider.

Objectives

Expand infrastructure to other domains, optimal use of resource assets, improve efficiency of resources sharing and usage, delivery new services to consumers.

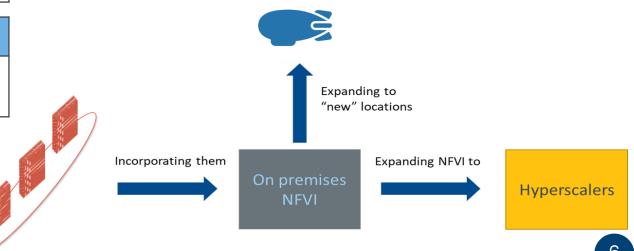
Examples

Non-terrestrial-networks (NTN) making use of high-altitude platform stations (HAPS) or unmanned aerial vehicles (UAV).

Status

Feature proposal endorsed by EVE NFV(22)000165r1

©ETSI 2022 – All rights reserved


Targets

Extend virtualization scope leveraging new infrastructure technologies.

Include new ways of programmability and cloud technology

Challenges

Accessability, high distribution, interoperability, security

Proposal C.2 New application virtualization forms

Scope

New forms of application virtualization and cloudification.

Objectives

Increase programmability, decoupling of software from infrastructure, further shortening development and testing efficiency, .

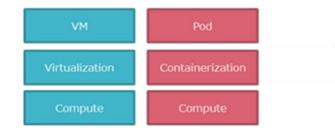
Examples

Unikernels, such as clickOS, MirageOS. Serverless / Function-as-a-Service (FaaS) In-kernel VMs, such as extended Berkeley Packet Filter (eBPF)

Status

Feature proposal endorsed by EVE NFV(22)000166

Targets


Extend virtualization scope and capability of resource sharing Include new ways of programmability and cloud technology

Challenges

Complex architectural aspects

Current forms of virtualization/cloudification

Additional new forms of virtualization/cloudification

UnikernelsFunctionVirtualizationContainerizationComputeCompute

Proposal C.3 Deterministic communication technologies

Scope

Deterministic communication technologies injected and applied to NFV-based deployments.

Objectives

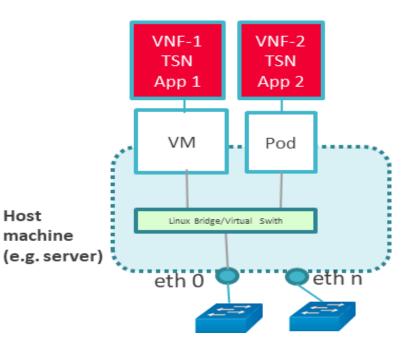
Providing common precision time synchronization, capability to deploy time-sensitive/deterministic communication aware VNF, toward the realization of deterministic communication needed in domains such as RAN.

Examples

IEEE TSN (Time Sensitive Networking), IETF Detnet Connectivity requirements in vRAN

Status

Review ongoing in EVE NFV(22)000167


©ETSI 2022 - All rights reserved

Targets

Improve connectivity for new service. Address QoS (latency, jitter) requirements

Challenges

MANO of TSN technoloty in NFVI, Implications on VNFs

Proposal B.7 (1/2) Physical Infrastructure Manager (PIM)

Scope

Extend scope of NFV to include hardware management. Support LCM and FCAPS for consumers of bare-metal resources (compute, storage and network).

Objectives

Provide common solution for NFV consumers using de-facto solutions like DTMF Redfish, Openstack Ironic, metal³ Align with requirements in Anuket RM, GSMA OPG SBI-CR

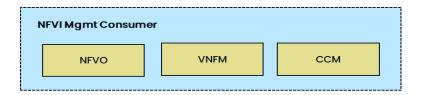
Examples

CCM southbound, Energy-saving, NFV-supported vRAN

Status

Feature proposal endorsed by EVE NFV(22)000255r2

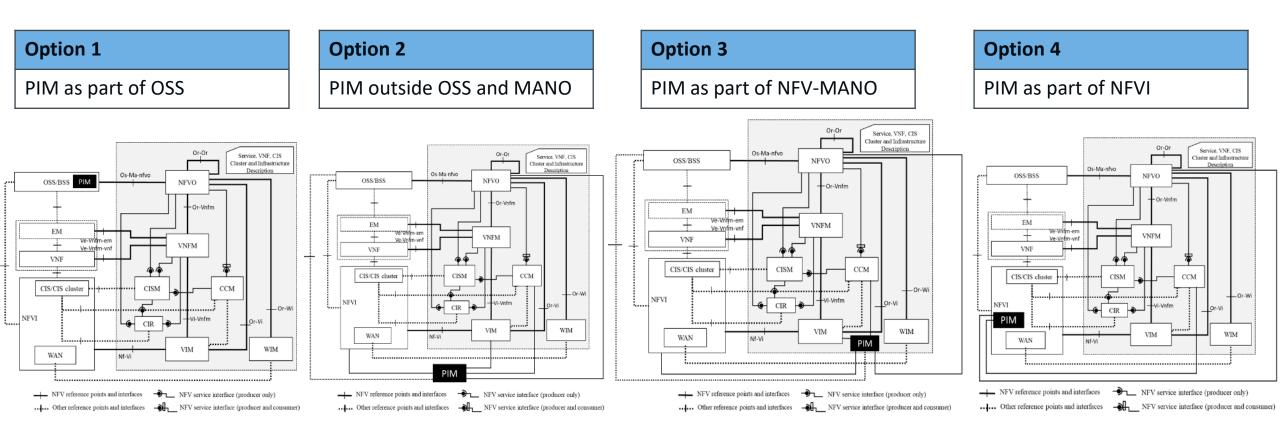
©ETSI 2022 – All rights reserved



Targets

Profile Reference-point/API definition for de facto standards

Challenges


Heterogenous hardware, variety of GPU/NPU, acceleration hardware, like Smart NICs, Architectural implications, Reliability and Security support

NFVI Mgmt Producer		
	CISM	
	VIM/WIM	
	PIM (new)	

Proposal B.7 (2/2) Physical Infrastructure Manager (PIM) Architectural Options

Proposal B.9 Latency aspects for VNF deployment

Scope

Improve QoS support by supporting end-to-end latency requirements

Objectives

Better support ETSI ISG MEC and other use cases with high QoS aspect.

Examples

Gaming, V2X use cases

Status

Discussion ongoing in EVE (NFVEVE(23)000015) Parts to merge into C.3, rest may be a small enhancement

Targets

Better alignment with ETSI ISG MEC Improve QoS

Challenges

End-to End view not well covered in NFV In relation to C.3: Not all network resources will support deterministic networks

Proposal D.4 Base MANO APIs on Open Source

Scope

Proposal to change specification process in stage 3 and generate normative specifications from code (preferably open source defacto standard).

Idea

Create stage 3 specifications mainly from coded APIs, using tools, input can be existing APIs from de-facto standards In case of gaps, ISG NFV should first create coded APIs, and then specifications using tools To reduce overlap, stage 2 normative work can be simplified

(reduce level of details, e.g. for model and parameter description)

Background

Use result of IFA051 "Report on VNF management gap analysis with open source projects". Details on WI in Annex; good progress since then.

Objectives

Faster process. Use tools for document creation

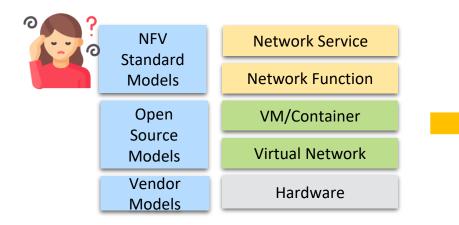
Challenges

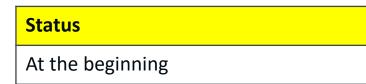
Change of process requires careful planning and probably a pilot as well as a transition planning

Status

Drafting call

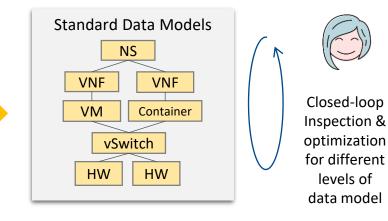
Discussion ongoing in EVE


Proposal A.5 Less imperative APIs



Scope

Improve NFV API structure by providing declarative intent driven APIs and unified data models.


Nowadays Scatted Data Model & Data Sources

Objectives

Simplifying the interaction by mapping intent into MANO APIs. Declarative API: Tell your network what desired status is, instead of how to achieve it command by command. Unified data models help visualizing/simplifying networks.

Future Unified Data Models: Programmable and Inter-operable

Conclusion

- A first set of features is ready to be approved in the TSC.
- First study work items can be started.
- Additional features for release 6 are still welcome.

Thank you for your attention

