

ETSI NFV Conference

Evolving NFV towards the Next Decade Celebrating the 10th Anniversary of ETSI NFV

Is Mobile Networking Ready for the Serverless Revolution?

Pablo Serrano

07/03/2023

Background

- Mobile Networking is adopting two key technologies from Computer Science
 - Softwarization
 - Modularization
- This supports several benefits
 - General-purpose hardware
 - More agility, more efficiency
- From telco engineers to software engineers

Plethora of SW projects (and papers)

- I. Gomez-Miguelez et al., "SrsLTE: An Open-Source Platform for LTE Evolution and Experimentation," in ACM WiNTECH 2016
- F. Gringoli et al., "Performance Assessment of Open Software Platforms for 5G Prototyping", IEEE Wir. Comm. Magazine, 2018
- N. Apostolakis et al. "Design and Validation of an Open Source Cloud Native Mobile Network", IEEE Comm. Magazine, 2022

Network Slicing

uc3m Universidad Carlos III de Madrid

From: J. Ordonez-Lucena et al. "Network Slicing for 5G with SDN/NFV: Concepts, Architectures, and Challenges," in *IEEE Communications Magazine*, May 2017.

The orchestration needs to be agile

Impact of aggregation level and reconfiguration time

The orchestration needs to be agile

Impact of aggregation level and reconfiguration time

Reconfiguration interval span τ

Universidad Carlos III de Madrid uc3m

C. Marguez et al., "How should I slice my network? A multi-service empirical evaluation of resource sharing efficiency," ACM MobiCom 2018, New Delhi, India

Evolution of softwarization

Single Server PNF
Years
Low

From PNF to VNF

Cloud Native

	Single Server PNF	Multi-tier VNF	Microservices H. Modular VNFs
Architecture			
Re-Configuration Re-Orchestration Frequency	Years	Months Clou Nativ	d Many times ye per day
Orchestration Complexity	Low	Moderate	High

Function as a Service (Faas)

	Single Server PNF	Multi-tier VNF	Microservices H. Modular VNFs	Serverless
Architecture				λ
Re-Configuration Re-Orchestration Frequency	Years	Months	Many times λ per day	Continuous
			, , , , , , , , , , , , , , , , , , ,	
Orchestration Complexity	Low	Moderate	High	Very High

Mobile Networking

	Single Server PNF	Multi-tier VNF	Microservices H. Modular VNFs	Serverless
Architecture				λ
Re-Configuration Re-Orchestration Frequency	Years	Months	Many times per day	Continuous
Orchestration Complexity	Low	Moderate	High	Very High

Monolithic

Distributed Access (u-plane)

Modular

Advantages

• Scalability

Advantages

Resource shortage

P. Serrano, "The path towards a cloud-aware mobile network protocol stack," Transactions on Emerging Telecom. Tech. Technologies, 2018

Challenges (1/3)

- Need to re-desing VNFs
- Current RAN functions
 - High load on the CPU
 - Stringent timing requirements
- New functions
 - Lessen requirements
 - Resource-aware execution

Universidad Carlos III de Madrid uc3m

RAN Virtualization," ACM MobiCom '21,

uc3m | Universidad Carlos III de Madrid

A. Garcia-Saavedra et al. "Nuberu: Reliable RAN Virtualization," ACM MobiCom '21,

Challenges (2/3)

- Scalable interconnections
 - Traditional approach: slow
 - Kernel bypass: machine-dependent

Challenges (2/3)

- Scalable interconnections
 - From iptables to eBPFs

Challenges (2/3)

- Scalable interconnections
 - From iptables to eBPFs

uc3m Universidad Carlos III de Madrid

F. Monaco et al. "Enabling Scalable SFCs in Kubernetes with eBPFbased Cross-Connections," IEEE NFV-SDN, 2022

Challenges (3/3)

- Precise orchestration algorithms for functions
 - Anticipate demand in time and space

Challenges (3/3)

- Precise orchestration algorithms for functions
 - Anticipate demand in time and space

capacity

Challenges (3/3)

- Precise orchestration algorithms for functions
 - Anticipate demand in time and space

uc3m Universidad Carlos III de Madrid

D. Bega et al., "DeepCog: Cognitive Network Management in Sliced 5G Networks with Deep Learning," IEEE INFOCOM, April 2019

capacity

Wrap up

- Cloud computing is already embracing microservices and serverless, while mobile networking is lagging
 - There are reasons for this
- Three main challenges
 - Re design of VNFs
 - Efficient and scalable interconnections
 - Novel orchestration approaches

Acknowledgements

- All my great co-authors
- European Union's Horizon 2020 research and innovation programme under grant agreement no. 101015956 (Hexa-X).
- Spanish Ministry of Economic Affairs and Digital Transformation and the European Union-NextGenerationEU through the UNICO 5G I+D SORUS projects.

Serverless Mobile Computing: From Theory to Practice IEEE Communications Magazine FT

Manuscript Submission Deadline: 31 March 2023 Decision Notification: 15 July 2023 Final Manuscript Due: 1 September 2023 Publication Date: October 2023

https://www.comsoc.org/publications/magazines/ieee-communicationsmagazine/cfp/serverless-mobile-computing-theory-practice