
Automatic Test Case
Generation from
Software Specifications
Thomas Arts

#UCAATOptimizing the Value of Automated Testing

A (logic) property is a kind of specification that states what should hold for the
software

Simple example:
For all lists of integers, the sort function should return a list in which the integers
occur in order

Idea

A specification explains how the software should behave

a property of
the sort
function

#UCAATOptimizing the Value of Automated Testing

A (logic) property is a kind of specification that states what should hold for the
software

Simple example:
For all lists of integers, the sort function should return a list in which the integers
are ordered

Idea

A specification explains what the software should do

∀ l ∈ list(integer) : ordered(sort(l))

function under
test

#UCAATOptimizing the Value of Automated Testing

Idea

Property based testing

∀ l ∈ list(integer) : ordered(sort(l))

Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool
for random testing of Haskell programs. SIGPLAN Not. 35, 9 (Sept.
2000), 268–279. https://doi.org/10.1145/357766.351266

Function type
specification in
programming

language

function call in
programming

language

user encoded
logic in same
programming
logic

Tool generates random
values from the domain
and executes the code

https://doi.org/10.1145/357766.351266

#UCAATOptimizing the Value of Automated Testing

Example: SMS encoding (ETSI TS 123 042)

Text messages on mobile phones in the early 2000
Use some free bytes in the communication protocol
140 bytes for text

With a little bit of compression,
we can get 160 bytes in there!

Algorithm: Change UCS2 Row

#UCAATOptimizing the Value of Automated Testing

Example: SMS encoding (ETSI TS 123 042)

3GPP TS 23.038: GSM 7 bit default alphabet (or ASCII)

Dec Char Dec Char Dec Char Dec Char
--------- --------- --------- ----------
0 NUL (null) 32 SPACE 64 @ 96 `
1 SOH (start of heading) 33 ! 65 A 97 a
2 STX (start of text) 34 " 66 B 98 b
3 ETX (end of text) 35 # 67 C 99 c
…
22 SYN (synchronous idle) 54 6 86 V 118 v
23 ETB (end of trans. block) 55 7 87 W 119 w
24 CAN (cancel) 56 8 88 X 120 x
25 EM (end of medium) 57 9 89 Y 121 y
26 SUB (substitute) 58 : 90 Z 122 z
27 ESC (escape) 59 ; 91 [123 {
28 FS (file separator) 60 < 92 \ 124 |
29 GS (group separator) 61 = 93] 125 }
30 RS (record separator) 62 > 94 ^ 126 ~
31 US (unit separator) 63 ? 95 _ 127 DEL

#UCAATOptimizing the Value of Automated Testing

Example: SMS encoding (ETSI TS 123 042)

1 0 0 1 00 0 1 0 0 1 00 0

1 1 0 0 01 1

1 1 0 1 10 0

1 1 0 0 01

1

1 0

10 1 0 1 000

pack

unpack

“Hej” = [72, 101, 106] [200, 178, 26]

#UCAATOptimizing the Value of Automated Testing

Example: SMS encoding (ETSI TS 123 042)

Instead of 3 tests with “random” input,
test(X) -> assertEqual(X, unpack(pack(X))).

test(“HEJ”).
test(“1234567890”).
test(“this is a message … of 160 characters long”).

Arbitrary many tests with randomly generated inputs
property() ->
?FORALL(Len, choose(0, 160),

?FORALL(Msg, vector(Len, ascii()),
Msg == unpack(pack(Msg)))).

user defined
type ascii

#UCAATOptimizing the Value of Automated Testing

Example: SMS encoding (ETSI TS 123 042)

Instead of 3 tests with “random” input,
test(X) -> assertEqual(X, unpack(pack(X))).

test(“HEJ”).
test(“1234567890”).
test(“this is a message … of 160 characters long”).

Arbitrary many tests with randomly generated inputs
property() ->
?FORALL(Len, choose(0, 160),

?FORALL(Msg, vector(Len, ascii()),
Msg == unpack(pack(Msg)))).

not just any
vector of ascii

#UCAATOptimizing the Value of Automated Testing

Example: SMS encoding (ETSI TS 123 042)

Instead of 3 tests with “random” input,
test(X) -> assertEqual(X, unpack(pack(X))).

test(“HEJ”).
test(“1234567890”).
test(“this is a message … of 160 characters long”).

Arbitrary many tests with randomly generated inputs
property() ->
?FORALL(Len, choose(0, 160),

?FORALL(Msg, vector(Len, ascii()),
Msg == unpack(pack(Msg)))).

DSL for more
advanced
generators

#UCAATOptimizing the Value of Automated Testing

Example: SMS encoding (ETSI TS 123 042)

eqc:quickcheck(eqc:testing_time(10, sms_eqc:property())).
..(x10)...(x1)...
Failed! After 993 tests.

[106, 53, 43, 0, 109, 27, 44] /= [106, 53, 43, 0, 109, 27, 44, 0]

Shrinking .xxxxxxxxxx.......xxxxxxxxx(8 times)

[65, 65, 65, 65, 65, 65, 65] /= [65, 65, 65, 65, 65, 65, 65, 0]

SUT drops the last
zero

1 0 0 0 00 1
1 0 0 0 00 1
0 0 0 0 00 0

pack

1 0 0 0 00 1
1 0 0 0 00 1

1 0 0 0 00 1
1 0 0 0 00 1

1 0 0 0 00 1

1 0
0 0 00 1

1
0 0 0 00 1
0 0 0 0 00 0

1 0 0 0
00 1

1 0 0
0 00 1

1 0 0 0 00
1

1 0 0 0
0

0
1
1 0 0 0 00 1

#UCAATOptimizing the Value of Automated Testing

With very little effort
● better testing than manually crafted tests
● find border case that fails

SMS example

#UCAATOptimizing the Value of Automated Testing

DSL for generators

Types as domain

More specific than
types

Data
dependencies

Testing more values

Better test case distribution
possible to avoid invalid input data

Help generating valid input

Denmark 1967-09-20 DK NNNN

Japan 1968-07-01 JP NNN-NNNN

Netherlands 1977-12-31 NL NNNN AA

https://en.wikipedia.org/wiki/Postal_codes_in_Denmark
https://en.wikipedia.org/wiki/ISO_3166-1:DK
https://en.wikipedia.org/wiki/Postal_codes_in_Japan
https://en.wikipedia.org/wiki/ISO_3166-1:JP
https://en.wikipedia.org/wiki/Postal_codes_in_the_Netherlands
https://en.wikipedia.org/wiki/ISO_3166-1:NL

#UCAATOptimizing the Value of Automated Testing

For example

for web services using JSON schema to specify
valid request and response data

Generalize to all API specifications ?

MessageTextCreate:
type: object
properties:

chatId:
type: string
format: uuid

senderId:
type: string
format: uuid

message:
maxLength: 65535
minLength: 1
type: string

version:
minimum: 1
type: integer
format: int32

web service

web
client

web service

can we lift
random

testing to
system level?

#UCAATOptimizing the Value of Automated Testing

Two observations

1) Controlled random generation
Need the DSL, many type notations cannot express dependencies,
distributions, etc

1) Real software has state
Just sending rubbish over http won’t give good tests
(even generating an object may require several API calls to create
object)

Generalize to all API specifications ?

#UCAATOptimizing the Value of Automated Testing

Idea

Stateful generators: generation of test sequences

Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger. 2006.

Testing telecoms software with quviq QuickCheck. In Proceedings of
the 2006 ACM SIGPLAN workshop on Erlang (ERLANG '06). Association for
Computing Machinery, New York, NY, USA, 2–10.
https://doi.org/10.1145/1159789.1159792

#UCAATOptimizing the Value of Automated Testing

Generation of test sequences

Test
generator

#UCAATOptimizing the Value of Automated Testing

Generation of test sequences

Test
generator

sequence
API calls

#UCAATOptimizing the Value of Automated Testing

Generation of test sequences

Test
generator

sequence
API calls

#UCAATOptimizing the Value of Automated Testing

Generation of test sequences

Test
generator

sequence
API calls

#UCAATOptimizing the Value of Automated Testing

Generation of test sequences

Test
generator

sequence
API calls

#UCAATOptimizing the Value of Automated Testing

Generation of test sequences

Test
generator

sequence
API calls

shrink

minimal
example

shrink both
sequence length

as well as
generated

arguments to API
calls

#UCAATOptimizing the Value of Automated Testing

Generation of test sequences

Specification is stateful model for API

initial state
for each API

precondition: possible in this state?
generate arguments for the API call
next state: update the model state given the call
postcondition: is SUT result comptable with model state

specification
linear in

number of API
calls!

Important:
choose right level of

abstraction for
model

#UCAATOptimizing the Value of Automated Testing

Example H.248
initial state: no calls

ADD args: random choose call ID, or none if first
parameters for the call

ADD pre: less than 2 call ID in call

ADD: adapter to call the SUT with given arguments

ADD next: add new call (first) with returned caller ID
or new caller to existing call in state

ADD post: Check result of ADD is compatible with model
(returns the right thing, e.g. not an error)

Generation of test sequences

#UCAATOptimizing the Value of Automated Testing

Example H.248
SUB pre: is there an ongoing call?

SUB args: random choose call ID with callers
parameters for subtract

SUB: adapter to call the SUT with given arguments

SUB next: remove caller from calls in state

SUB post: Check result of SUB is compatible with model
(returns the right thing, e.g. not an error)

Generation of test sequences

#UCAATOptimizing the Value of Automated Testing

Generation of test sequences

Shrinking of utmost value!

Testing H.248 media proxy
implementation

#UCAATOptimizing the Value of Automated Testing

Scaled to industrial examples

20 years of R&D to adapt to industrial needs

#UCAATOptimizing the Value of Automated Testing

Scaled to industrial examples

Sequences reveal faults

#UCAATOptimizing the Value of Automated Testing

Scaled to industrial examples

#UCAATOptimizing the Value of Automated Testing

Scaled to industrial examples

Techniques that make this method scale

#UCAATOptimizing the Value of Automated Testing

Scaled to industrial examples

Linear in size of API

Manually written test cases do not scale!

Why is testing hard?

features tests additional tests when
adding 1 feature

20 80 + 380 + 6840 4 + 20 + 380

triples of features

O(n3) test cases

#UCAATOptimizing the Value of Automated Testing

Scaled to industrial examples

Linear in size of API

Manually written test cases do not scale!

Property based testing needs linear amount of code per API call…
…in theory all combinations of interactions can be generated

#UCAATOptimizing the Value of Automated Testing

Scaled to industrial examples

Distribution of commands

If SUT has 192 API calls, then reaching subsequence like
ADD ADD SUB ADD

is difficult with uniform distribution

● create longer sequences and shrink to shorter faulty sequences
● guide distribution

model encodes weight depending on state and command
(more ADD than SUB, for example, to get full calls)

#UCAATOptimizing the Value of Automated Testing

Scaled to industrial examples

Statistics: what has been tested

Thomas Arts, John Hughes, "How Well are Your Requirements Tested?", 2016
IEEE International Conference on Software Testing, Verification and Validation
(ICST), pp.244-254, 2016.

Use the state during testing to record whether a specific
requirement has been tested

#UCAATOptimizing the Value of Automated Testing

Scaled to industrial examples

Positive and negative testing

Re-use same model
preconditions that prevent a command to be executed skipped
postcondition changed to expect an error if precondition was invalid

Run either with preconditions filtering failure cases
… or with always executing command and validate that it fails

Combinators to steer fault injection distribution (negative tests not too often)

See also:
Vedder, B., Arts, T., Vinter, J., & Jonsson, M. (2013, November). Combining fault-
injection with property-based testing. In Proceedings of International Workshop on
Engineering Simulations for Cyber-Physical Systems (pp. 1-8).

#UCAATOptimizing the Value of Automated Testing

Many different sequences of commands may shrink to the same minimal
failing case.

Scaled to industrial examples

Avoid known bugs

SEND

SEND

SEND

CONFIRM

RECV

CMD

CMD

CMD

SEND

SEND

SEND

CONFIRM

ALERT

CMD

CMD

CMD

SEND

CONFIRM

SEND

SENDshrink
shrink

John Hughes, Ulf Norell, Nick Smallbone,
Thomas Arts, "Find More Bugs with
QuickCheck!", 2016 IEEE/ACM 11th
International Workshop in Automation of
Software Test (AST), pp.71-77, 2016.

learn from bugs already
seen and avoid in

generation and shrinking

#UCAATOptimizing the Value of Automated Testing

How to do mocking when you generate a random test?

● A language to express mocked response on given model state
● Compute the mocked responses before each command execution

Scaled to industrial examples

Mocking

Svenningsson, J., Svensson, H., Smallbone, N., Arts, T., Norell, U., Hughes, J. (2014). An
Expressive Semantics of Mocking. In: Gnesi, S., Rensink, A. (eds) Fundamental Approaches
to Software Engineering. FASE 2014. Lecture Notes in Computer Science, vol 8411.
Springer, Berlin, Heidelberg.

SUT

mock

#UCAATOptimizing the Value of Automated Testing

● If actions are considered atomic, run them in parallel and check that results
can be explained with model

● Take control over scheduler… generate random schedules and shrink them
to scheduled with minimal context switches

Scaled to industrial examples

Testing for race conditions

See also
John Hughes, Benjamin C. Pierce, Thomas Arts, Ulf Norell, "Mysteries of DropBox: Property-
Based Testing of a Distributed Synchronization Service", 2016 IEEE International
Conference on Software Testing, Verification and Validation (ICST), pp.135-145, 2016.

Questions?

	Automatic Test Case Generation from Software Specifications
	Idea
	Idea
	Idea
	Example: SMS encoding (ETSI TS 123 042)
	Example: SMS encoding (ETSI TS 123 042)
	Example: SMS encoding (ETSI TS 123 042)
	Example: SMS encoding (ETSI TS 123 042)
	Example: SMS encoding (ETSI TS 123 042)
	Example: SMS encoding (ETSI TS 123 042)
	Example: SMS encoding (ETSI TS 123 042)
	SMS example
	DSL for generators
	Generalize to all API specifications ?
	Generalize to all API specifications ?
	Idea
	Generation of test sequences
	Generation of test sequences
	Generation of test sequences
	Generation of test sequences
	Generation of test sequences
	Generation of test sequences
	Generation of test sequences
	Generation of test sequences
	Generation of test sequences
	Generation of test sequences
	Scaled to industrial examples
	Scaled to industrial examples
	Scaled to industrial examples
	Scaled to industrial examples
	Scaled to industrial examples
	Why is testing hard?
	Scaled to industrial examples
	Scaled to industrial examples
	Scaled to industrial examples
	Scaled to industrial examples
	Scaled to industrial examples
	Scaled to industrial examples
	Scaled to industrial examples
	Diapositive numéro 46

