
Luca Compagna, SAP Security Research

14/11/2023

Testability Tarpits:
the Impact of Code Patterns on
the Security Testing of Software
Applications

#UCAAT

About me and others that contributed…

Luca Compagna

https://www.testable.eu/

joint work with:
Feras Al Kassar (SAP), Giulia Clerici (SAP), Fabian Yamaguchi (SHIFTLEFT), Davide Balzarotti (EURECOM)

Funded by EU project TESTABLE

https://sap.sharepoint.com/sites/126716
https://www.testable.eu/
https://testable.eu/

#UCAAT

Context: SAST and testability
Static application security testing (SAST) is widely used in industry to detect vulnerabilities [1]

[1] OWASP Code Review Guide v2.0, cf. Figure 1 and Figure 2

// sink

https://owasp.org/www-project-code-review-guide/assets/OWASP_Code_Review_Guide_v2.pdf

Context: Injection vulnerabilities

.

.

.

.

.

.

.

.

.

.

.

.

Any attacker-controlled data (source) flowing in a dangerous operation (sink) without sanitization?

source

sink

Tainting data-flow

Context: Injection vulnerabilities

.

.

.

.

.

.

.

.

.

.

.

.

Any attacker-controlled data (source) flowing in a dangerous operation (sink) without sanitization?

source

sink

Tainting data-flow

#UCAAT

Context: SAST and testability
Static application security testing (SAST) is widely used in industry to detect vulnerabilities [1]

[1] OWASP Code Review Guide v2.0, cf. Figure 1 and Figure 2

// sink

https://owasp.org/www-project-code-review-guide/assets/OWASP_Code_Review_Guide_v2.pdf

#UCAAT

Context: SAST and testability

Was all the code analyzed?

No bugs under the carpet?

//
sink

Static application security testing (SAST) is widely used in industry to detect vulnerabilities [1]

Research questions

Code obstacles impacting SAST?

Can we measure these obstacles?

Can we discover/remediate them?

[1] OWASP Code Review Guide v2.0, cf. Figure 1 and Figure 2

https://owasp.org/www-project-code-review-guide/assets/OWASP_Code_Review_Guide_v2.pdf

CVE-2011-3357: File inclusion in mantis bug tracker

// sink

CVE-2011-3357: File inclusion in mantis bug tracker

// sink

CVE-2011-3357: File inclusion in mantis bug tracker

// sink

CVE-2011-3357: File inclusion in mantis bug tracker

// sink

CVE-2011-3357: File inclusion in mantis bug tracker

POST
https://mantisb.com/service

action=<ATTACKER_PAYLOAD>

// sink

// source

https://mantisb.com/service

#UCAAT

testability pattern skeleton (baseline XSS)

Toward testability patterns for SAST

// replace with

// code companion for the obstacle

// {

$a = $_GET[“p1”]; // source

$b = $a // replace with obstacle!

echo $b; // sink

vulnerable app

pattern

creation (1)

// sink

Many SAST tools (including commercial ones) do not find that File inclusion

obstacle?

#UCAAT

testability pattern skeleton (baseline XSS)

// replace with

// code companion for the obstacler)

// {

$a = $_GET[“p1”]; // source

$b = $a // replace with obstacle!

echo $b; // sink

Toward testability patterns for SAST

Many SAST tools (including commercial ones) do not find that File inclusion

vulnerable app

SAST

measurement (2)

testability pattern instance

pattern

creation (1)

SAST Correct
RIPS NO

phpSAFE NO

WAP NO

Progpilot YES

Comm_2 NO

Comm_1 YES

pattern

transformation (3)

12 $r = gpc_get(...$args); // no obstacle anymore

After that transformation, commercial tool Comm_2 finds the File inclusion!

// sink

function F($var) { // code companion

return $var; // for the obstacle

} //

$a = $_GET[“p1”]; // source

$b = call_user_func_array(“F”, [$a]); // obstacle

echo $b; // sink

obstacle?

#UCAAT

Many variants of that pattern can be created…

instance 1
instance 2

instance 3

function F($var) { // code companion

return $var; // for the obstacle

} //

$a = $_GET[“p1”]; // source

$b = call_user_func_array(“F”, [$a]); // obstacle

echo $b; // sink

function F($var) { // code companion

return $var; // for the obstacle

} //

$a = $_GET[“p1”]; // source

$f = “F”; // obstacle

$b = call_user_func_array($f, [$a]); // obstacle

echo $b; // sink

function F_1($var) { // code companion

return $var; // for the obstacle

} //

function F_2($var) { //

return “foo”; //

} //

$a = $_GET[“p1”]; // source

$f = $_GET[“Func_id”]; // obstacle

$b = call_user_func_array(“F_”.$f, [$a]); // obstacle

echo $b; // sink

…

#UCAAT

Testability Patterns for SAST

Targeted 3 popular languages

• PHP: ~120 pattern instances

• JS: ~150 pattern instances

• Java: ~200 pattern instances

We inspected the entire language manual

What do we want to do with them?

• SAST tools measurement

• Discover patterns into applications

• Remediate patterns to increase testability

https://github.com/testable-eu/sast-testability-patterns

https://github.com/testable-eu/sast-testability-patterns
https://github.com/testable-eu/sast-testability-patterns

#UCAAT

Testability Patterns Framework for SAST

Framework provides operations for

• SAST tools measurement (e.g., codeql integrated)

• Discover patterns into apps (via Joern and Scala queries)

tpframework measure -l JS -p 1 2 --tools codeql:2.9.2

tpframework discovery -t MYAPP/ -l PHP –a --tools T1:V1 T2:V2

Results spoiler

1. Measurement: many SAST tools struggle on our patterns

2. Discovery: many apps in Github use these patterns

3. Testability for SAST can be improved!

https://github.com/testable-eu/sast-tp-framework

https://github.com/testable-eu/sast-tp-framework
https://github.com/testable-eu/sast-tp-framework

#UCAAT

1. Measurement: many SAST tools struggle on our patterns

Measured our pattern instances against SAST

• Overall: <50% support for PHP and <60% for JS

• Tools Combination: 66% PHP, 82% JS

#UCAAT

2. Discovery: many apps in Github use these patterns

PHP: created discovery rules for our patterns and run them over >3000 open-source PHP apps (from Github

and Sourcecodester)

Our patterns are very prevalent in the real world

Unique obstacles per

Project

obstacles per

LoC

AVG 21 20

#UCAAT

2. Discovery: many apps in Github use these patterns

PHP: created discovery rules for our patterns and run them over >3000 open-source PHP apps (from Github

and Sourcecodester)

Our patterns are very prevalent in the real world

Unique obstacles per

Project

obstacles per

LoC

AVG 21 20

Comm_1 8 203

Comm_2 13 47

#UCAAT

3. Testability for SAST can be improved!

Remediation 1: Two transformation experiments targeting PHP and JS

• transformations intended as code rewriting for obstacles

• >9000 new alerts: 370 true positives in 48 apps (over ~2700 alerts inspected)

• 182 true positives already confirmed from 31 projects: 38 impacting popular Github projects

Remediation 2: improve SAST tools (e.g., our paper at USENIX 2023)

Remediation 3: provide custom rules to make SAST tools overcoming obstacles (on-going work)

#UCAAT

A new OWASP project: journey started

Targeting the Testability dimension

First concrete result: Testability Patterns for SAST

• https://github.com/testable-eu/sast-testability-patterns

• https://github.com/testable-eu/sast-tp-framework

Interested to contribute with your valuable expertise?

https://owasp.org/www-project-testability-patterns-for-web-applications/

Let us devise OWASP top 10 testability patterns for SAST!

Can we do the same for DAST, Privacy, ML?

https://owasp.org/www-project-testability-patterns-for-web-applications/

Any further questions?

	Slide 1: Testability Tarpits: the Impact of Code Patterns on the Security Testing of Software Applications
	Slide 2: About me and others that contributed…
	Slide 3: Context: SAST and testability
	Slide 4: Context: Injection vulnerabilities
	Slide 5: Context: Injection vulnerabilities
	Slide 6: Context: SAST and testability
	Slide 7: Context: SAST and testability
	Slide 8: CVE-2011-3357: File inclusion in mantis bug tracker
	Slide 9: CVE-2011-3357: File inclusion in mantis bug tracker
	Slide 10: CVE-2011-3357: File inclusion in mantis bug tracker
	Slide 11: CVE-2011-3357: File inclusion in mantis bug tracker
	Slide 12: CVE-2011-3357: File inclusion in mantis bug tracker
	Slide 13: Toward testability patterns for SAST
	Slide 14: Toward testability patterns for SAST
	Slide 15: Many variants of that pattern can be created…
	Slide 16: Testability Patterns for SAST
	Slide 17: Testability Patterns Framework for SAST
	Slide 18: 1. Measurement: many SAST tools struggle on our patterns
	Slide 19: 2. Discovery: many apps in Github use these patterns
	Slide 20: 2. Discovery: many apps in Github use these patterns
	Slide 22: 3. Testability for SAST can be improved!
	Slide 23: A new OWASP project: journey started
	Slide 24

