
Mesut Durukal

Linkedin: mesutdurukal

Test Automation
as a service

AGENDA
Preparation

 Problem Definition
 Requirement

Analysis

Implementation

Serve
 Maintenance
 Support

Chapter One

Preparation

● No standard across multiple teams/projects

● Struggling with problems,

which were already solved somewhere else

● Duplication

● Code quality

● Reliability issues

● No monitoring

Problem Statement

cy.get(button + ':visible')

 .click()

 .invoke('text')

 .as('labelOnButton');

cy.wait(2000);

cy.get('@labelOnButton')

.then((actualLabel)=> {

expect(actualLabel)

.to

.equal('25 k’)})

Kayla Leo Susan

cy.get(button +
':visible')

 .click()

 .should('contain',

'25 k’);

cy.get(button)

 .should('be.visible')

 .click()

 .should('have.text',

'25 k’);

Rob

cy.get(button + ':visible')

.click()

.then((button)=>{

expect(button

.text())

.to

.equal('25k’);})

myFramework.checkText(filterButton, '25 k')

● Developing standards.
● Avoid any antipatterns.
● Remove duplication.
● Provide solutions to common problems.
● Provide an opportunity for monitoring
● Dashboards, queries, filters, charts

Targets

Roadmap

● Objectives & Key Results

● Requirements definition

● Prioritization

Objectives
and Key Metrics

QUALITY ASSURANCE

Improve Confidence
Quantity: Coverage
Quality: Escaped Bugs

Support Fast Delivery
Automation
Execution duration
Implementation
False alarms
Test fix time

Test coverage 90%

Number of critical incidents <3

Automation coverage 100%

Total regression duration <10 mins

False failures <5%

Average test fix time < 24 hours

Average test implementation time < 1 sprint

 Safari Automation

 No infrastructure for automated regression testing

 No proper Jira workflow for bugs

 Impossibly testable cases

 Unclear requirements / features

 Infrastructure instabilities

 Errors raised by the SUT

 Cross domain redirection

 Code changes to selectors / missing selectors

 Proctor tests roll ups breaking automation

 Test flakiness

 Escaped bugs

 Share tests between similar products

 Use same approach for tests within a project

 Keeping account profile data untainted

 API testing framework compatibility

Challenges

 Testing BE and/or FE together should be supported

 Rest API and GraphQL testing should be supported

 API testing should support authenticated requests

 FE testing modules should support Cookie operations

 Including individual or a group of tests to the suite

 Excluding tests from the executions should be possible.

 Requests modification/interception should be supported

 Response modification/interception should be supported

 Test Input Management should be in place

 Automatic bug reports after failures

 Slack Notifications after executions

 Evidence collection

 Monitoring dashboards

 There should be Hard fail and soft fail modes

 Tests should be easily integrable to Gitlab/Github

 Tests should be executable on multi-branch pipelines

 Tests should be executable on different branches

 Tests should be executable after commits/before merges

 Cross domain testing should be supported

 Clean up

 Mocking should be supported

 Various browsers should be supported

 Mobile testing should be supported (native app)

 User manual should be generated

 It should be easy to write new tests

 Parallel execution should be supported

 Test flakiness should be detected and reduced

 Retry (line/whole test) strategy

 No sensitive data should be revealed

 Resources should be configurable

 Static code analysis (linters, servers)

 Dependencies should be auto-updated?

 Accessibility testing components

 Tests should have priorities

 Async requests should be handled properly.

Requirements

Chapter Two

Implementation

● Community Research

● Check other benchmarks

● Self experience

● Decision Criteria

○ Speed

○ Ease of coding

○ Flexibility

○ Documentation & Support

○ Licensing / Cost

○ Feature Compatibility

Benchmarking

Cypress

Playwright

Testcafe
Selenium

Nightwatch

Flexible
Integrity
Scalable
Priority

Understandable
Transparent
Documentation
Troubleshooting

Reliable
Coverage
Non Disruptive
Testability

Performance
Resource
consumption
Multiple execution
Versioning

Quality Dimensions

Flexible: Configurable, Cross Platforms

Scalable/Portable: Parallelization, Desktop/Mobile Goal Oriented: Priorities

Integrity: Can integrate to CI platforms

Understandable

Documentation: Read Me, Manuals Troubleshooting, Evidences: SS, Video

Transparent, Visible

Reliable

Nondisruptive Testability: Mocks

Coverage

Performance

Multiple Execution Versioning

Resource Consumption

Chapter Three

Service

Speed Up Implementation
● Define the locators

○ Find the parent of an element
○ Find siblings and children

● Implement test steps
○ Wait for responses, conditions
○ Parse Promises

page.locator(selector).click();
vs
page.click(page.locator(selector));

page.locator(':text("label")');
vs
page.getElementsByName("label");

recentSearchesTitle().locator("xpath=..");
vs
page.locator("article:has(" +
recentSearchesTitle() + ")")

Eventually, looks like:

Measure the effect!
Average:
2 hours locators
3 hours
implementation

30 mins

Monitoring

TRAINING

● Observe Problems, Improvement Areas
● Requirements
● Architecture
● Implementation
● Outcome
● Monitoring

Wrap Up

Any further questions?

mesutdurukal DurukalMesut mesutdurukal.commesutdurukal

	Durukal.pdf
	Test Automation�as a service
	Slide Title
	Diapositive numéro 3

