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Software Testing
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Testing:  A Definition

Software testing is:

• a technical process,

• performed by executing / experimenting with a product,

• in a controlled environment, following a specified procedure,

• with the intent of measuring one or more characteristics /

quality of the software product

• by demonstrating the deviation of the actual status of the product 

from the required status / specification.
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static analysis

reviewing
inspection

walk-through
debugging

certification

CMM

quality control

requirement

management

software process

Quality :  There is more than Testing

verification

QUALITY

testingtesting



Sorts of Testing
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• Quality characteristics

– functional,  security,  compliance,  interoperability

– reliability,  robustness,  usability,  learnability

– performance,  resource,  stress,  portability,  conformance

• Who

– developer,  tester,  user,  QA,  third party,  certifier

– alpha testing,  beta testing,  system admin,  . . .

• Phase

– programming,  integration,  acceptance,  regression,  . . .

• Unit under test

– unit,  module,  component,  subsystem,  system, system-of-systems

– documentation,  system-in-context

• Goal of testing

– bug finding,  confidence,  certification, . . . 

• Testing techniques

– Black / white-box,  . . .

• . . . . . 

Sorts of Testing :  Classification
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Sorts of Testing

unit

integration

system

performance

robustness

functionality

white box black box

Unit under test

Accessibility

Quality 

Characteristic

usability

reliability

module

security

system-of-systems
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unit

integration

system

performance

robustness

functionality

white box black box

Unit under test

Accessibility

Quality 

Characteristic

usability

reliability

module

security

system-of-systems

Sorts of Testing :  Model-Based Testing



Measuring some quality characteristic

of an executing software object

by performing experiments

in a controlled environment

while comparing actual behaviour

with required behaviour

specification

Software Testing
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functionality

SUT

tester

specification

specification-

based,

active,

black-box

testing

of functionality

System Under Test

tester

SUT
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Model-Based Testing

Basics



SUT

System Under Test
pass fail

1. Manual testing

1 :  Manual Testing
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SUT

pass fail

test 

execution 

TTCNTTCNtest

cases

1. Manual testing

2. Scripted testing

2 :  Scripted Testing
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SUT

pass fail

test 

execution 

1. Manual testing

2. Scripted testing

3. Keyword-driven 

testing

3 :  Keyword-Driven Testing

high-level

test notation
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test

scripts



system

model

SUT

TTCNTTCNTest

cases

pass fail

model-based

test 

generation

test 

execution 

1. Manual testing

2. Scripted testing

3. Keyword-driven 

testing

4. Model-based 

testing

4 :  Model-Based Testing
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Measuring some quality characteristic

of an executing software object

by performing experiments

in a controlled environment

while comparing actual behaviour

with required behaviour

specification

=

system model

Model-Based Testing
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functionality

SUT

MBT Tester

system model

specification-

based,

active,

black-box

testing

of functionality

System Under Test

MBT Test Generation + Execution

SUT



MBT: next step in test automation

• Automatic test generation

+  test execution  +  result analysis

• More, longer, and diversified test cases

more variation in test flow and in test data

• Model is precise and consistent test basis

unambiguous analysis of test results

• Test maintenance by maintaining models

improved regression testing

• Expressing test coverage

model  coverage

customer profile coverage

MBT :  Benefits

detecting more bugs 

faster and cheaper

SUT

pass fail

model-based

test 

generation

test 

execution 

model
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SUT passes tests

SUT

conforms to

model



system

model

SUT

TTCNTTCN
Test

cases

pass fail

test 

execution 

model-based

test 

generation

SUT

conforms to

model

sound   exhaustive

Model Based Testing



connectivity
multi

disciplinarity

change

variability

evolvability

complexity

uncertainty

heterogeneous

components
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Model-Based Testing :  Challenges

model

composition

abstraction

under
specification

uncertainty
nondeterminism

concurrency 
parallelism

state + 

complex data

large state 

space

partial
specification

multiple 

paradigms 
integration

test 

selection

Model

Based

Testing

Challenges



19

Models

of Systems



Modelling Methods and Formalisms

• Labelled Transition Systems

• Automata

• Formal Languages

• Petri Nets

• Finite-State Machines

( Mealy - , Moore Machines )

• (First Order) Properties

• Abstract Data Types

• Streams

• Data Flow Models

• . . . . .
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Modelling Formalism ≠ Modelling Languages

• Functions over Time

• Linear Differential Equations

• PDE

• Simulink Models

• Bayesian Networks

• Queueing Networks

• Fault Trees

• Programming Language Models

• Drawings

• Clay Models

• Paper model

• . . . .



SYSTEMS

|

STATIC <----> DYNAMIC

|

TIME-VARYING <---> TIME-INVARIANT

|

LINEAR <---> NONLINEAR

|

CONTINUOUS-STATE <---> DISCRETE-STATE

|

TIME-DRIVEN <---> EVENT-DRIVEN

|

DETERMINISTIC <---> STOCHASTIC

|

DISCRETE-TIME <---> CONTINUOUS-TIME

Modelling Systems

• Traditional systems theory:  (piecewise-) continuous functions of time;

analysis and control with ordinary and partial differential equations

• Nowadays, Digital systems:  discrete, event-driven

21

Cassandras, Lafortune: 

Introduction to Discrete Event Systems 

models



Modelling Systems

• System :  “something real”    ( realization )

• Model   : an “abstraction”

• Model    :  “any representation of a system not being the system itself”  (Edward Lee)

• By choosing a model, or a class of models, or a modeling formalism,

you determine a view on the system

(and restrict the properties under consideration)

• A system is not continuous or discrete, a model is

• One system has many models, for different purposes:
– quality characteristics

– abstraction levels

– prescriptive  → descriptive

– black-box / functional  → white-box / structural

– . . . . .
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Model  ≠ System
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System Modelling for MBT

system

View on a system:

black box, with discrete,

atomic events on interfaces:

 inputs, initiated by environment

 outputs, initiated by the system

Typical modelling formalisms:

 automata

 formal languages, grammar

 symbolic transition systems

 (extended) finite-state machine

 petri nets

 labelled transition system

 . . . . .

Our systems are digital :

 discrete, event-driven,

 reactive, dynamic,

 data-intensive,

 black-box
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realization

virtualization

design

models

abstract

(test)

models

Spectrum of Models



A Software Model 
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More with Models
?coin

?button

!alarm ?button

!coffee

model-based prediction
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Code Generation from a Model

A model is more  (less)

than code generation:

• views

• abstraction

• testing of aspects

• verification and validation

of aspects
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? x (x >= 0)

! y

yxy   =  x

model of 𝒙

• specification of properties

rather than construction

• under-specification

• non-determinism

Code Generation from a Model
Not Always Possible



tester
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system context

virtualization,

simulation

model

environment

virtualization

model,

digital twin

system

Models for Testing

user

test context

user

model

context 

models

software

mechanical

physical

software

model,

prescriptive



tester
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virtualization,

simulation

model
environment

software

virtualization

model,

digital twin mechanical

system

Models for Testing :  Stubs

physical



user
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environment

software

mechanical

system

Models for Testing :  Usage Profile

physical

user

model
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A Choice of Modelling Formalism :

Labelled Transition Systems
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Models: Labelled Transition Systems

states
transitions

T  S  (L {})  S

initial state

s0  S

Labelled Transition System:      S,  LI, LU, T,  s0 

input

labels output

labels

? = input

!  = output

L = LI  LU

LI ∩ LU = ∅

?coin

?button

!alarm ?button

!coffee

http://www.cartoline.it/pics/_zoom_flash.htm?immagine=scherzi_150404_01


MBT :  Example Models
?coin

?button

!alarm ?button

!coffee
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MBT :  Example Models



LTS :  Representation

• Explicit :  { S0, S1, S2, S3 } ,

{ ?coin } ,

{ !coffee, !tea } ,

{ ( S0, ?coin, S1 ),

( S1, !coffee, S2 ),

( S1, !tea, S3 )  } ,

S0 

• Transition tree / graph

• Language :

S ::= Coin   >-> ( Coffee ## Tea  )

36

! coffee

? coin

! tea

S1

S2 S3

S0

S



SUT

LTS :  A Black-Box View on Systems
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A

B X

Y

• Inputs Channels:    A;  B  

• Output Channels: X;  Y 

A black-box view

on a system starts

with its interfaces



SUT

A ? n

B ? s X ! n+1 

Y ! `yes`

Symbolic Transition System 

channels with messages :

Symbolic Trabs

• Inputs Channels: 

A :: Int;   B :: Struct

• Output Channels:

X :: Int;   Y :: String

38

SUT

real, black-box system

communicating with its 

environment

via messages on input- and 

output channels

STS :  A Black-Box View on Systems



a?n

a?k

x!n+1

x!42

b?m

y!`no`

a?n

y!`yes`

model

A View on Systems and Models

39

modelled as

a symbolic 

transition system

SUT
b

a

x

y

black-box

system view

Abstracted from :

• real-time

• probabilities

• derivatives (hybrid)
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Model-Based Testing

with Labelled Transition Systems
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SUT passes tests

SUT

conforms to

model



system

model

SUT

TTCNTTCN
Test

cases

pass fail

test 

execution 

model-based

test 

generation

SUT

conforms to

model

sound   exhaustive

Model Based Testing
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SUT passes generated tests

SUT behaving as LTS

conforms to

LTS Model



LTS

model

SUT
viewed
as LTS

TTCNTTCN
Test

cases

pass fail

LTS test 

execution 

test

generation :

LTS → TESTS

SUT

conforms to

model

sound   exhaustive

Model Based Testing with LTS



Equivalences

on Labelled Transition Systems
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Observable Behaviour

?



?a

!x

?a

 !x

?a ?a

!x

?a

!x



?



?



?



“ Some transition systems

are more equal than others “
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S1 S2

environment environment

▪ Suppose an environment interacts with the systems:

▪ the environment tests the system as black box

by observing and actively controlling it;

▪ the environment acts as a tester;

▪ Two systems are equivalent iff they pass the same tests.

Comparing Transition Systems
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S1 S2

environment

e

environment

e

Comparing Transition Systems

 

?    ?

S1  S2   t  T .   obs ( t, S1 ) =   obs (t, S2 )
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S1 S2

environment environment

Comparing Transition Systems

S1 tr S2  traces ( S1 ) =   traces ( S2 )

traces ( s )   = {    L*  |  s 
}Traces:
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Trace Equivalence

?a

!x

?a

 !x

?a ?a

!x

?a

!x



for all: traces ( . )    = {   , ?a , ?a.!x }

tr

tr

tr

tr
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Equivalence with 𝛅

?a

!x

?a

 !x

?a ?a

!x

?a

!x



𝛅

𝛅

𝛅

𝛅

𝛅

𝛅

𝛅

𝛅

𝛅

𝛅

p


p =      !x  LU  {} . p !x

Straces ( s )    =    {    ( L  {} )*  | s  }



50

Stronger Equivalences

?a

!x

?a

 !x

?a ?a

!x

?a

!x



?

?

𝛅

𝛅

𝛅

𝛅

𝛅

𝛅

b





MBT :  Equivalences

1. equivalent if they have the same behaviours

51

S1  S2  behaviours ( S1 ) =   behaviours ( S2 )

S1  S2   t  T .  S1 passes t  S2 passes t 

S1  S2  traces ( S1 ) =   traces ( S2 )                  

S1  S2  Straces ( S1 ) =   Straces ( S2 )     

2. equivalent if they pass the same tests

3. equivalent if they allow the same implementations

S1  S2  Imp ( S1 ) =   Imp ( S2 )
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A Choice of Test Cases

– labels in   LI  LU  {  }

– ‘quiescence’ / ‘time-out’ label 

– tree-structured

– finite, deterministic

– sink states pass and fail

– from each state  pass, fail :

• either one input !a and all outputs ?x

• or all outputs ?x and  

!dub

!kwart

?tea

?coffee?tea



!dub



failfail

model of a test case

=   labelled transition system failfail

?coffee
?tea

failpass

?coffee
?tea

failfail

?coffee
?tea

?coffee

pass failpass
pass

LU  {}

fail

LU  {}
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implementation

i

specification

s

environment

e

environment

e

uioco

i  IOTS s  LTS

uioco  IOTS (LI,LU)  x LTS (LI,LU)

Observing IOTS where system inputs

interact with environment outputs, and v.v.

A Choice of Implementation Relation:  uioco

i uioco s

i is a conforming implementation of  s

IOTS:

input

enabled 

LTS
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MBT with Labelled Transition Systems

and uioco
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SUT passes generated

uioco tests

SUT behaving as

input-enabled LTS

conforms to

LTS Model



LTS

model

SUT
viewed as

input-enabled LTS

TTCNTTCN
Test

cases

pass fail

LTS test 

execution 

uioco test

generation

algorithm :

LTS → TESTS

SUT

conforms to

model

sound   exhaustive

Model Based Testing with LTS and uioco
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s


s ⇔ s refuses LU

Input/Output Conformance :  uioco

i uioco s =def    Utraces (s) :  out (i after )   out (s after ) 

s is a Labelled Transition System

i is (assumed to be) an input-enabled LTS

out ( P )   =  {  !x  LU |  pP: p !x }  {  |  pP: p  p }

Straces (s) =   {   ( L  {} )* | s


}

Utraces (s) =    {   Straces (s)   |

 1 ?b 2 =  : not ( s after 1 refuses  {?b} )  }

𝛍 𝛍  A ∪ 𝛕 : ss refuses A   

s after  =     { s’ | s  s’ }
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i uioco s =def    Utraces (s) :  out (i after )   out (s after ) 

Intuition:

i uioco-conforms to s,  iff

• if i produces output  x after U-trace  ,

then s can produce  x after  

• if i cannot produce any output after U-trace  ,

then  s cannot produce any output after  (called quiescence  )

Input/Output Conformance :  uioco

s is a Labelled Transition System

i is (assumed to be) an input-enabled LTS
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!coffee

?dime

?quart

?dime
?quart

?dime
?quart

?dime

!choc 

?quart

!tea

!coffee

?dime

!tea

specification

model

Example:  uioco



?dime

!coffee

?dime

!choc  

?dime

!tea

i uioco s =def 

   Utraces (s) :

out (i after )   out (s after ) 

non-determinism

uncertainty

under-specification
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Algorithm to generate a test case   t ( S )

from a transition system state set S,  with  S  ,  and initially` S = s0 after 

Apply the following steps recursively, non-deterministically : 

Test Generation Algorithm :  uioco

t ( S after !x )

2 supply input  !a

!a

t ( S after ?a ), for ?a  LI
and not S refuses {?a}

fail fail

allowed outputsforbidden outputs

?y ?x

1 end test case

pass

allowed outputs (or ): !x out (S )

forbidden outputs (or ): !y out (S )

3 observe all outputs

fail fail

allowed outputsforbidden outputs

 ?x?y

t ( S after !x )
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Example:  uioco Test Generation

i uioco s

i fails  t

!coffee

?dime

!tea

specification

model

s

?coffee

!dime

?tea ?choc



pass failpass fail

generated

test case

t

!choc  

?dime

!tea

implementationi

i uioco s =def 

   Utraces (s) :

out (i after )   out (s after ) 
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s  LTS

SUT

i uioco s

test

tool

gen : LTS

→(TTS)

t  SUT

SUT  passes gen(s)

SUT comforms to s

  soundexhaustive

Prove soundness and exhaustiveness:

iIOTS .

( tgen(s) . i passes t )

 i uioco s

Testability assumption :

SUTIMP . mSUTIOTS .

tTESTS .

SUT passes t  mSUT passes t

pass fail

MBT with uioco is Sound and Exhaustive
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s  SPEC

SUT

i conf s

test

tool

genimp:

SPEC →

(TEST)

EXEC

(t,SUT)

SUT  passes genimp (s)

SUT comforms to s

  soundexhaustive

Prove soundness and exhaustiveness:

s  SPEC . i  IMP .

( t  genimp(s) . i passes t )

 i imp s

Testability assumption :

SUT .  iSUT IMP .

t  TEST .

SUT passes t  iSUT passes t

pass fail

MBT :  Formal Framework Overview

SPEC

TEST

genimp

imp

IMP

SUTs

passes



Formal Framework :  Instantiations

• Labelled Transitions System

• Finite-State Machines

• Formal Language acceptance

• Abstract Data Type testing

• Property-Based Testing

• . . . . .
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SPEC

TEST

genimp

imp

IMP

SUTs

passes

Giving different interpretations

to these abstract concepts,

different model-based testing

theories are obtained :
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SPEC

TEST

genimp

imp

IMP

SUTs

passes

• side-effect free

computations

• relations

over typed

values

• functions

• sets of

typed values

Instantiation :  Property-Based Testing

• function ⊆ relation

• constraint satisfaction

on results of function

computations

• random value

generation
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You can use MBT

without knowing all this



• AETG

• Agatha

• Agedis

• Autolink

• Axini Test Manager

• Conformiq

• Cooper

• Cover

• DTM

• fMBT

• Gst

• Gotcha

• Graphwalker

• JTorX

• MaTeLo

• MBTsuite

• M-Frame

• MISTA

• NModel

• OSMO

• ParTeG

• Phact/The Kit

• PyModel

• QuickCheck

• Reactis

• Recover

• RT-Tester

• SaMsTaG

• Smartesting CertifyIt

• Spec Explorer

• StateMate

• STG

• tedeso

• Temppo

• TestGen (Stirling)

• TestGen (INT)

• TestComposer

• TestOptimal

• TGV

• Tigris

• TorX

• TorXakis

• T-Vec

• Tveda

• Uppaal-Cover

• Uppaal-Tron

• . . . . . . . . . . . 

MBT :  Many Tools



MBT Tools  u/ioco

• AETG

• Agatha

• Agedis

• Autolink

• Axini Test Manager

• Conformiq

• Cooper

• Cover

• DTM

• fMBT

• Gst

• Gotcha

• Graphwalker

• JTorX

• MaTeLo

• MBTsuite

• M-Frame

• MISTA

• NModel

• OSMO

• ParTeG

• Phact/The Kit

• PyModel

• QuickCheck

• Reactis

• Recover

• RT-Tester

• SaMsTaG

• Smartesting CertifyIt

• Spec Explorer

• StateMate

• STG

• tedeso

• Temppo

• TestGen (Stirling)

• TestGen (INT)

• TestComposer

• TestOptimal

• TGV

• Tigris

• TorX

• TorXakis

• T-Vec

• Tveda

• Uppaal-Cover

• Uppaal-Tron

• . . . . . . . . . . . 
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• AETG

• Agatha

• Agedis

• Autolink

• Axini Test Manager

• Conformiq

• Cooper

• Cover

• DTM

• fMBT

• Gst

• Gotcha

• Graphwalker

• JTorX

• MaTeLo

• MBTsuite

• M-Frame

• MISTA

• NModel

• OSMO

• ParTeG

• Phact/The Kit

• PyModel

• QuickCheck

• Reactis

• Recover

• RT-Tester

• SaMsTaG

• Smartesting CertifyIt

• Spec Explorer

• StateMate

• STG

• tedeso

• Temppo

• TestGen (Stirling)

• TestGen (INT)

• TestComposer

• TestOptimal

• TGV

• Tigris

• TorX

• TorXakis

• T-Vec

• Tveda

• Uppaal-Cover

• Uppaal-Tron

• . . . . . . . . . . . 

Yet Another MBT Tool

TorXakis

https://torxakis.org
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change
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complexity

uncertainty

heterogeneous

components
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MBT :  Next Step Challenges

model

composition

abstraction

under
specification

uncertainty
nondeterminism

concurrency 
parallelism

state + 

complex data

large state 

space

partial
specification

multiple 

paradigms 
integration

test 

selection

Model

Based

Testing

Challenges



Models

• state-based control flow  and  complex data

• support for  parallel, concurrent  systems

• composing complex models from simple models

• non-determinism, uncertainty

• abstraction, under-specification

70

Tool

• on-line MBT tool

Under the hood

• powerful constraint/SMT solvers (Z3, CVC4)

• well-defined semantics and algorithms

• ioco testing theory

for symbolic transition systems

• algebraic data-type definitions

TorXakis :  Overview

But ....

• research prototype

• poor usability

Current Research

• test selection

• partial models &

composition

Applications

• several high-tech 

systems companies

• experimental level

https://torxakis.org



Principles of

Model-Based Testing

There is nothing more practical

than a good theory

Jan Tretmans

jan.tretmans@tno.nl
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