
Jan Tretmans

TNO-ESI – Embedded Systems Innovation by TNO

Radboud University Nijmegen

jan.tretmans@tno.nl

Principles of

Model-Based Testing

2

Software Testing

3

Testing: A Definition

Software testing is:

• a technical process,

• performed by executing / experimenting with a product,

• in a controlled environment, following a specified procedure,

• with the intent of measuring one or more characteristics /

quality of the software product

• by demonstrating the deviation of the actual status of the product

from the required status / specification.

4

static analysis

reviewing
inspection

walk-through
debugging

certification

CMM

quality control

requirement

management

software process

Quality : There is more than Testing

verification

QUALITY

testingtesting

Sorts of Testing

6

• Quality characteristics

– functional, security, compliance, interoperability

– reliability, robustness, usability, learnability

– performance, resource, stress, portability, conformance

• Who

– developer, tester, user, QA, third party, certifier

– alpha testing, beta testing, system admin, . . .

• Phase

– programming, integration, acceptance, regression, . . .

• Unit under test

– unit, module, component, subsystem, system, system-of-systems

– documentation, system-in-context

• Goal of testing

– bug finding, confidence, certification, . . .

• Testing techniques

– Black / white-box, . . .

•

Sorts of Testing : Classification

7

Sorts of Testing

unit

integration

system

performance

robustness

functionality

white box black box

Unit under test

Accessibility

Quality

Characteristic

usability

reliability

module

security

system-of-systems

8

unit

integration

system

performance

robustness

functionality

white box black box

Unit under test

Accessibility

Quality

Characteristic

usability

reliability

module

security

system-of-systems

Sorts of Testing : Model-Based Testing

Measuring some quality characteristic

of an executing software object

by performing experiments

in a controlled environment

while comparing actual behaviour

with required behaviour

specification

Software Testing

9

functionality

SUT

tester

specification

specification-

based,

active,

black-box

testing

of functionality

System Under Test

tester

SUT

10

Model-Based Testing

Basics

SUT

System Under Test
pass fail

1. Manual testing

1 : Manual Testing

11

SUT

pass fail

test

execution

TTCNTTCNtest

cases

1. Manual testing

2. Scripted testing

2 : Scripted Testing

12

SUT

pass fail

test

execution

1. Manual testing

2. Scripted testing

3. Keyword-driven

testing

3 : Keyword-Driven Testing

high-level

test notation

13

test

scripts

system

model

SUT

TTCNTTCNTest

cases

pass fail

model-based

test

generation

test

execution

1. Manual testing

2. Scripted testing

3. Keyword-driven

testing

4. Model-based

testing

4 : Model-Based Testing

14

Measuring some quality characteristic

of an executing software object

by performing experiments

in a controlled environment

while comparing actual behaviour

with required behaviour

specification

=

system model

Model-Based Testing

15

functionality

SUT

MBT Tester

system model

specification-

based,

active,

black-box

testing

of functionality

System Under Test

MBT Test Generation + Execution

SUT

MBT: next step in test automation

• Automatic test generation

+ test execution + result analysis

• More, longer, and diversified test cases

more variation in test flow and in test data

• Model is precise and consistent test basis

unambiguous analysis of test results

• Test maintenance by maintaining models

improved regression testing

• Expressing test coverage

model coverage

customer profile coverage

MBT : Benefits

detecting more bugs

faster and cheaper

SUT

pass fail

model-based

test

generation

test

execution

model

17

SUT passes tests

SUT

conforms to

model



system

model

SUT

TTCNTTCN
Test

cases

pass fail

test

execution

model-based

test

generation

SUT

conforms to

model

sound   exhaustive

Model Based Testing

connectivity
multi

disciplinarity

change

variability

evolvability

complexity

uncertainty

heterogeneous

components

18

Model-Based Testing : Challenges

model

composition

abstraction

under
specification

uncertainty
nondeterminism

concurrency
parallelism

state +

complex data

large state

space

partial
specification

multiple

paradigms
integration

test

selection

Model

Based

Testing

Challenges

19

Models

of Systems

Modelling Methods and Formalisms

• Labelled Transition Systems

• Automata

• Formal Languages

• Petri Nets

• Finite-State Machines

(Mealy - , Moore Machines)

• (First Order) Properties

• Abstract Data Types

• Streams

• Data Flow Models

•

20

Modelling Formalism ≠ Modelling Languages

• Functions over Time

• Linear Differential Equations

• PDE

• Simulink Models

• Bayesian Networks

• Queueing Networks

• Fault Trees

• Programming Language Models

• Drawings

• Clay Models

• Paper model

•

SYSTEMS

|

STATIC <----> DYNAMIC

|

TIME-VARYING <---> TIME-INVARIANT

|

LINEAR <---> NONLINEAR

|

CONTINUOUS-STATE <---> DISCRETE-STATE

|

TIME-DRIVEN <---> EVENT-DRIVEN

|

DETERMINISTIC <---> STOCHASTIC

|

DISCRETE-TIME <---> CONTINUOUS-TIME

Modelling Systems

• Traditional systems theory: (piecewise-) continuous functions of time;

analysis and control with ordinary and partial differential equations

• Nowadays, Digital systems: discrete, event-driven

21

Cassandras, Lafortune:

Introduction to Discrete Event Systems

models

Modelling Systems

• System : “something real” (realization)

• Model : an “abstraction”

• Model : “any representation of a system not being the system itself” (Edward Lee)

• By choosing a model, or a class of models, or a modeling formalism,

you determine a view on the system

(and restrict the properties under consideration)

• A system is not continuous or discrete, a model is

• One system has many models, for different purposes:
– quality characteristics

– abstraction levels

– prescriptive → descriptive

– black-box / functional → white-box / structural

–

22

Model ≠ System

23

System Modelling for MBT

system

View on a system:

black box, with discrete,

atomic events on interfaces:

 inputs, initiated by environment

 outputs, initiated by the system

Typical modelling formalisms:

 automata

 formal languages, grammar

 symbolic transition systems

 (extended) finite-state machine

 petri nets

 labelled transition system



Our systems are digital :

 discrete, event-driven,

 reactive, dynamic,

 data-intensive,

 black-box

24

realization

virtualization

design

models

abstract

(test)

models

Spectrum of Models

A Software Model

25

More with Models
?coin

?button

!alarm ?button

!coffee

model-based prediction

27

Code Generation from a Model

A model is more (less)

than code generation:

• views

• abstraction

• testing of aspects

• verification and validation

of aspects

28

? x (x >= 0)

! y

yxy = x

model of 𝒙

• specification of properties

rather than construction

• under-specification

• non-determinism

Code Generation from a Model
Not Always Possible

tester

29

system context

virtualization,

simulation

model

environment

virtualization

model,

digital twin

system

Models for Testing

user

test context

user

model

context

models

software

mechanical

physical

software

model,

prescriptive

tester

30

virtualization,

simulation

model
environment

software

virtualization

model,

digital twin mechanical

system

Models for Testing : Stubs

physical

user

31

environment

software

mechanical

system

Models for Testing : Usage Profile

physical

user

model

32

A Choice of Modelling Formalism :

Labelled Transition Systems

33

Models: Labelled Transition Systems

states
transitions

T  S  (L {})  S

initial state

s0  S

Labelled Transition System:  S, LI, LU, T, s0 

input

labels output

labels

? = input

! = output

L = LI  LU

LI ∩ LU = ∅

?coin

?button

!alarm ?button

!coffee

http://www.cartoline.it/pics/_zoom_flash.htm?immagine=scherzi_150404_01

MBT : Example Models
?coin

?button

!alarm ?button

!coffee

34

MBT : Example Models

LTS : Representation

• Explicit :  { S0, S1, S2, S3 } ,

{ ?coin } ,

{ !coffee, !tea } ,

{ (S0, ?coin, S1),

(S1, !coffee, S2),

(S1, !tea, S3) } ,

S0 

• Transition tree / graph

• Language :

S ::= Coin >-> (Coffee ## Tea)

36

! coffee

? coin

! tea

S1

S2 S3

S0

S

SUT

LTS : A Black-Box View on Systems

37

A

B X

Y

• Inputs Channels: A; B

• Output Channels: X; Y

A black-box view

on a system starts

with its interfaces

SUT

A ? n

B ? s X ! n+1

Y ! `yes`

Symbolic Transition System

channels with messages :

Symbolic Trabs

• Inputs Channels:

A :: Int; B :: Struct

• Output Channels:

X :: Int; Y :: String

38

SUT

real, black-box system

communicating with its

environment

via messages on input- and

output channels

STS : A Black-Box View on Systems

a?n

a?k

x!n+1

x!42

b?m

y!`no`

a?n

y!`yes`

model

A View on Systems and Models

39

modelled as

a symbolic

transition system

SUT
b

a

x

y

black-box

system view

Abstracted from :

• real-time

• probabilities

• derivatives (hybrid)

40

Model-Based Testing

with Labelled Transition Systems

41

SUT passes tests

SUT

conforms to

model



system

model

SUT

TTCNTTCN
Test

cases

pass fail

test

execution

model-based

test

generation

SUT

conforms to

model

sound   exhaustive

Model Based Testing

42

SUT passes generated tests

SUT behaving as LTS

conforms to

LTS Model



LTS

model

SUT
viewed
as LTS

TTCNTTCN
Test

cases

pass fail

LTS test

execution

test

generation :

LTS → TESTS

SUT

conforms to

model

sound   exhaustive

Model Based Testing with LTS

Equivalences

on Labelled Transition Systems

44

Observable Behaviour

?



?a

!x

?a

 !x

?a ?a

!x

?a

!x



?



?



?



“ Some transition systems

are more equal than others “

45

S1 S2

environment environment

▪ Suppose an environment interacts with the systems:

▪ the environment tests the system as black box

by observing and actively controlling it;

▪ the environment acts as a tester;

▪ Two systems are equivalent iff they pass the same tests.

Comparing Transition Systems

46

S1 S2

environment

e

environment

e

Comparing Transition Systems

 

? ?

S1  S2   t  T . obs (t, S1) = obs (t, S2)

47

S1 S2

environment environment

Comparing Transition Systems

S1 tr S2  traces (S1) = traces (S2)

traces (s) = {   L* | s 
}Traces:

48

Trace Equivalence

?a

!x

?a

 !x

?a ?a

!x

?a

!x



for all: traces (.) = {  , ?a , ?a.!x }

tr

tr

tr

tr

49

Equivalence with 𝛅

?a

!x

?a

 !x

?a ?a

!x

?a

!x



𝛅

𝛅

𝛅

𝛅

𝛅

𝛅

𝛅

𝛅

𝛅

𝛅

p


p =  !x  LU  {} . p !x

Straces (s) = {   (L  {})* | s  }

50

Stronger Equivalences

?a

!x

?a

 !x

?a ?a

!x

?a

!x



?

?

𝛅

𝛅

𝛅

𝛅

𝛅

𝛅

b



MBT : Equivalences

1. equivalent if they have the same behaviours

51

S1  S2  behaviours (S1) = behaviours (S2)

S1  S2   t  T . S1 passes t  S2 passes t

S1  S2  traces (S1) = traces (S2)

S1  S2  Straces (S1) = Straces (S2)

2. equivalent if they pass the same tests

3. equivalent if they allow the same implementations

S1  S2  Imp (S1) = Imp (S2)

52

A Choice of Test Cases

– labels in LI  LU  {  }

– ‘quiescence’ / ‘time-out’ label 

– tree-structured

– finite, deterministic

– sink states pass and fail

– from each state  pass, fail :

• either one input !a and all outputs ?x

• or all outputs ?x and 

!dub

!kwart

?tea

?coffee?tea



!dub



failfail

model of a test case

= labelled transition system failfail

?coffee
?tea

failpass

?coffee
?tea

failfail

?coffee
?tea

?coffee

pass failpass
pass

LU  {}

fail

LU  {}

53

implementation

i

specification

s

environment

e

environment

e

uioco

i  IOTS s  LTS

uioco  IOTS (LI,LU) x LTS (LI,LU)

Observing IOTS where system inputs

interact with environment outputs, and v.v.

A Choice of Implementation Relation: uioco

i uioco s

i is a conforming implementation of s

IOTS:

input

enabled

LTS

54

MBT with Labelled Transition Systems

and uioco

55

SUT passes generated

uioco tests

SUT behaving as

input-enabled LTS

conforms to

LTS Model



LTS

model

SUT
viewed as

input-enabled LTS

TTCNTTCN
Test

cases

pass fail

LTS test

execution

uioco test

generation

algorithm :

LTS → TESTS

SUT

conforms to

model

sound   exhaustive

Model Based Testing with LTS and uioco

56

s


s ⇔ s refuses LU

Input/Output Conformance : uioco

i uioco s =def    Utraces (s) : out (i after )  out (s after )

s is a Labelled Transition System

i is (assumed to be) an input-enabled LTS

out (P) = { !x  LU |  pP: p !x }  {  |  pP: p  p }

Straces (s) = {   (L  {})* | s


}

Utraces (s) = {   Straces (s) |

 1 ?b 2 =  : not (s after 1 refuses {?b}) }

𝛍 𝛍  A ∪ 𝛕 : ss refuses A 

s after  = { s’ | s  s’ }

57

i uioco s =def    Utraces (s) : out (i after )  out (s after )

Intuition:

i uioco-conforms to s, iff

• if i produces output x after U-trace ,

then s can produce x after 

• if i cannot produce any output after U-trace ,

then s cannot produce any output after  (called quiescence )

Input/Output Conformance : uioco

s is a Labelled Transition System

i is (assumed to be) an input-enabled LTS

58

!coffee

?dime

?quart

?dime
?quart

?dime
?quart

?dime

!choc

?quart

!tea

!coffee

?dime

!tea

specification

model

Example: uioco



?dime

!coffee

?dime

!choc

?dime

!tea

i uioco s =def

   Utraces (s) :

out (i after )  out (s after )

non-determinism

uncertainty

under-specification

59

Algorithm to generate a test case t (S)

from a transition system state set S, with S  , and initially` S = s0 after 

Apply the following steps recursively, non-deterministically :

Test Generation Algorithm : uioco

t (S after !x)

2 supply input !a

!a

t (S after ?a), for ?a  LI
and not S refuses {?a}

fail fail

allowed outputsforbidden outputs

?y ?x

1 end test case

pass

allowed outputs (or ): !x out (S)

forbidden outputs (or ): !y out (S)

3 observe all outputs

fail fail

allowed outputsforbidden outputs

 ?x?y

t (S after !x)

60

Example: uioco Test Generation

i uioco s

i fails t

!coffee

?dime

!tea

specification

model

s

?coffee

!dime

?tea ?choc



pass failpass fail

generated

test case

t

!choc

?dime

!tea

implementationi

i uioco s =def

   Utraces (s) :

out (i after )  out (s after )

61

s  LTS

SUT

i uioco s

test

tool

gen : LTS

→(TTS)

t  SUT

SUT passes gen(s)

SUT comforms to s

  soundexhaustive

Prove soundness and exhaustiveness:

iIOTS .

(tgen(s) . i passes t)

 i uioco s

Testability assumption :

SUTIMP . mSUTIOTS .

tTESTS .

SUT passes t  mSUT passes t

pass fail

MBT with uioco is Sound and Exhaustive

62

s  SPEC

SUT

i conf s

test

tool

genimp:

SPEC →

(TEST)

EXEC

(t,SUT)

SUT passes genimp (s)

SUT comforms to s

  soundexhaustive

Prove soundness and exhaustiveness:

s  SPEC . i  IMP .

(t  genimp(s) . i passes t)

 i imp s

Testability assumption :

SUT .  iSUT IMP .

t  TEST .

SUT passes t  iSUT passes t

pass fail

MBT : Formal Framework Overview

SPEC

TEST

genimp

imp

IMP

SUTs

passes

Formal Framework : Instantiations

• Labelled Transitions System

• Finite-State Machines

• Formal Language acceptance

• Abstract Data Type testing

• Property-Based Testing

•

63

SPEC

TEST

genimp

imp

IMP

SUTs

passes

Giving different interpretations

to these abstract concepts,

different model-based testing

theories are obtained :

64

SPEC

TEST

genimp

imp

IMP

SUTs

passes

• side-effect free

computations

• relations

over typed

values

• functions

• sets of

typed values

Instantiation : Property-Based Testing

• function ⊆ relation

• constraint satisfaction

on results of function

computations

• random value

generation

65

You can use MBT

without knowing all this

• AETG

• Agatha

• Agedis

• Autolink

• Axini Test Manager

• Conformiq

• Cooper

• Cover

• DTM

• fMBT

• Gst

• Gotcha

• Graphwalker

• JTorX

• MaTeLo

• MBTsuite

• M-Frame

• MISTA

• NModel

• OSMO

• ParTeG

• Phact/The Kit

• PyModel

• QuickCheck

• Reactis

• Recover

• RT-Tester

• SaMsTaG

• Smartesting CertifyIt

• Spec Explorer

• StateMate

• STG

• tedeso

• Temppo

• TestGen (Stirling)

• TestGen (INT)

• TestComposer

• TestOptimal

• TGV

• Tigris

• TorX

• TorXakis

• T-Vec

• Tveda

• Uppaal-Cover

• Uppaal-Tron

•

MBT : Many Tools

MBT Tools u/ioco

• AETG

• Agatha

• Agedis

• Autolink

• Axini Test Manager

• Conformiq

• Cooper

• Cover

• DTM

• fMBT

• Gst

• Gotcha

• Graphwalker

• JTorX

• MaTeLo

• MBTsuite

• M-Frame

• MISTA

• NModel

• OSMO

• ParTeG

• Phact/The Kit

• PyModel

• QuickCheck

• Reactis

• Recover

• RT-Tester

• SaMsTaG

• Smartesting CertifyIt

• Spec Explorer

• StateMate

• STG

• tedeso

• Temppo

• TestGen (Stirling)

• TestGen (INT)

• TestComposer

• TestOptimal

• TGV

• Tigris

• TorX

• TorXakis

• T-Vec

• Tveda

• Uppaal-Cover

• Uppaal-Tron

•

67

• AETG

• Agatha

• Agedis

• Autolink

• Axini Test Manager

• Conformiq

• Cooper

• Cover

• DTM

• fMBT

• Gst

• Gotcha

• Graphwalker

• JTorX

• MaTeLo

• MBTsuite

• M-Frame

• MISTA

• NModel

• OSMO

• ParTeG

• Phact/The Kit

• PyModel

• QuickCheck

• Reactis

• Recover

• RT-Tester

• SaMsTaG

• Smartesting CertifyIt

• Spec Explorer

• StateMate

• STG

• tedeso

• Temppo

• TestGen (Stirling)

• TestGen (INT)

• TestComposer

• TestOptimal

• TGV

• Tigris

• TorX

• TorXakis

• T-Vec

• Tveda

• Uppaal-Cover

• Uppaal-Tron

•

Yet Another MBT Tool

TorXakis

https://torxakis.org

connectivity
multi

disciplinarity

change

variability

evolvability

complexity

uncertainty

heterogeneous

components

69

MBT : Next Step Challenges

model

composition

abstraction

under
specification

uncertainty
nondeterminism

concurrency
parallelism

state +

complex data

large state

space

partial
specification

multiple

paradigms
integration

test

selection

Model

Based

Testing

Challenges

Models

• state-based control flow and complex data

• support for parallel, concurrent systems

• composing complex models from simple models

• non-determinism, uncertainty

• abstraction, under-specification

70

Tool

• on-line MBT tool

Under the hood

• powerful constraint/SMT solvers (Z3, CVC4)

• well-defined semantics and algorithms

• ioco testing theory

for symbolic transition systems

• algebraic data-type definitions

TorXakis : Overview

But

• research prototype

• poor usability

Current Research

• test selection

• partial models &

composition

Applications

• several high-tech

systems companies

• experimental level

https://torxakis.org

Principles of

Model-Based Testing

There is nothing more practical

than a good theory

Jan Tretmans

jan.tretmans@tno.nl

	Slide 1
	Slide 2: Software Testing
	Slide 3: Testing: A Definition
	Slide 4: Quality : There is more than Testing
	Slide 5: Sorts of Testing
	Slide 6
	Slide 7: Sorts of Testing
	Slide 8: Sorts of Testing : Model-Based Testing
	Slide 9
	Slide 10: Model-Based Testing Basics
	Slide 11: 1 : Manual Testing
	Slide 12: 2 : Scripted Testing
	Slide 13: 3 : Keyword-Driven Testing
	Slide 14: 4 : Model-Based Testing
	Slide 15
	Slide 16
	Slide 17: Model Based Testing
	Slide 18
	Slide 19: Models of Systems
	Slide 20: Modelling Methods and Formalisms
	Slide 21: Modelling Systems
	Slide 22: Modelling Systems
	Slide 23: System Modelling for MBT
	Slide 24: Spectrum of Models
	Slide 25: A Software Model
	Slide 26: More with Models
	Slide 27: Code Generation from a Model
	Slide 28: Code Generation from a Model Not Always Possible
	Slide 29
	Slide 30
	Slide 31
	Slide 32: A Choice of Modelling Formalism : Labelled Transition Systems
	Slide 33: Models: Labelled Transition Systems
	Slide 34: MBT : Example Models
	Slide 35: MBT : Example Models
	Slide 36: LTS : Representation
	Slide 37: LTS : A Black-Box View on Systems
	Slide 38: STS : A Black-Box View on Systems
	Slide 39: A View on Systems and Models
	Slide 40: Model-Based Testing with Labelled Transition Systems
	Slide 41: Model Based Testing
	Slide 42: Model Based Testing with LTS
	Slide 43: Equivalences on Labelled Transition Systems
	Slide 44: Observable Behaviour
	Slide 45
	Slide 46
	Slide 47
	Slide 48: Trace Equivalence
	Slide 49: Equivalence with 𝛅
	Slide 50: Stronger Equivalences
	Slide 51: MBT : Equivalences
	Slide 52: A Choice of Test Cases
	Slide 53: A Choice of Implementation Relation: uioco
	Slide 54: MBT with Labelled Transition Systems and uioco
	Slide 55: Model Based Testing with LTS and uioco
	Slide 56: Input/Output Conformance : uioco
	Slide 57: Input/Output Conformance : uioco
	Slide 58: Example: uioco
	Slide 59: Test Generation Algorithm : uioco
	Slide 60: Example: uioco Test Generation
	Slide 61: MBT with uioco is Sound and Exhaustive
	Slide 62: MBT : Formal Framework Overview
	Slide 63: Formal Framework : Instantiations
	Slide 64: Instantiation : Property-Based Testing
	Slide 65: You can use MBT without knowing all this
	Slide 66: MBT : Many Tools
	Slide 67: MBT Tools u/ioco
	Slide 68: Yet Another MBT Tool
	Slide 69
	Slide 70: TorXakis : Overview
	Slide 71

