
ETSI AI Conference 2024

Generative Al From Language to Vision

Presented by: Prof. Pietro Michiardi

05/02/2024

Overview

GenAl for Natural Language

- Text as sequential data
- Transformers
- LLMs, training, fine-tuning

GenAl for Computer Vision

- Inspiration from physics
- Conditional generation
- Multi modality

Perspectives

Hello

◆_

Tell me what's on your mind, or pick a suggestion.

🔀 Get started with generative AI

Remove Background Remove the background from your image in one click.

Design Creator

Al will create it for you.

Brand Kit Creator

Use generative AI to create a brand kit -

logos, colors, fonts, and more.

Try it

Describe a design in words and generative

Generative Erase Use AI to zap objects from your photos for a clean look.

Generate

Generate

Album Creator Add your photos for a custom album with collages and animations.

С

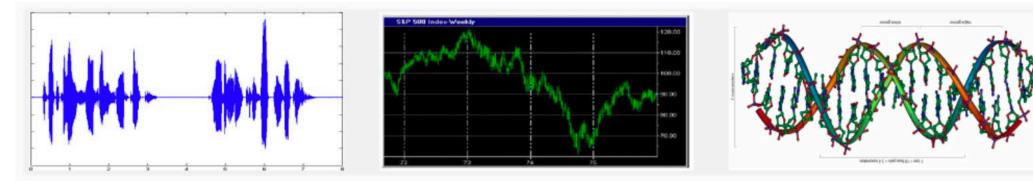
Generative AI: Introduction by an LLM!

can you prepare a bullet list (say 3 or 4 items) that give an overview to what generative AI is?

View other drafts 🛛 🔨

Draft 1	Draft 2	Draft 3	
1. Generative AI (GANs) is a type of artificial intelligence that can produce new content, such as text, images, audio,	Sure, here is a bullet list that gives an overview of what generative AI is:	1. Generative AI is a subset of artificial intelligence that focuses on creating new content, such as images,	G

- 1. Generative AI is a subset of artificial intelligence that focuses on creating new content, such as images, videos, text, and music. This is in contrast to other types of AI, which are more focused on understanding or manipulating existing data.
- 2. Generative AI models are typically trained on large datasets of human-created content. This allows the models to learn the patterns and relationships that are common in that type of content. The models can then use this knowledge to generate new content that is similar to the training data.
- 3. Generative AI is a powerful tool that can be used for a variety of purposes. It can be used to create new art, design new products, generate realistic simulations, and even write original music. As generative AI technology continues to develop, we can expect to see even more innovative and creative applications.



GenAl for Natural Language

Most machine learning algorithms are designed for independent data points

- Many interesting data types are not independent, for example **natural language**
- Successive points in sequential data are strongly correlated

We are interested in learning models for sequential data:

- Assume data points to be correlated
- Can use contextual information

What's the "context" in language? Structure, semantics, relations between words, ...

Transformers Models

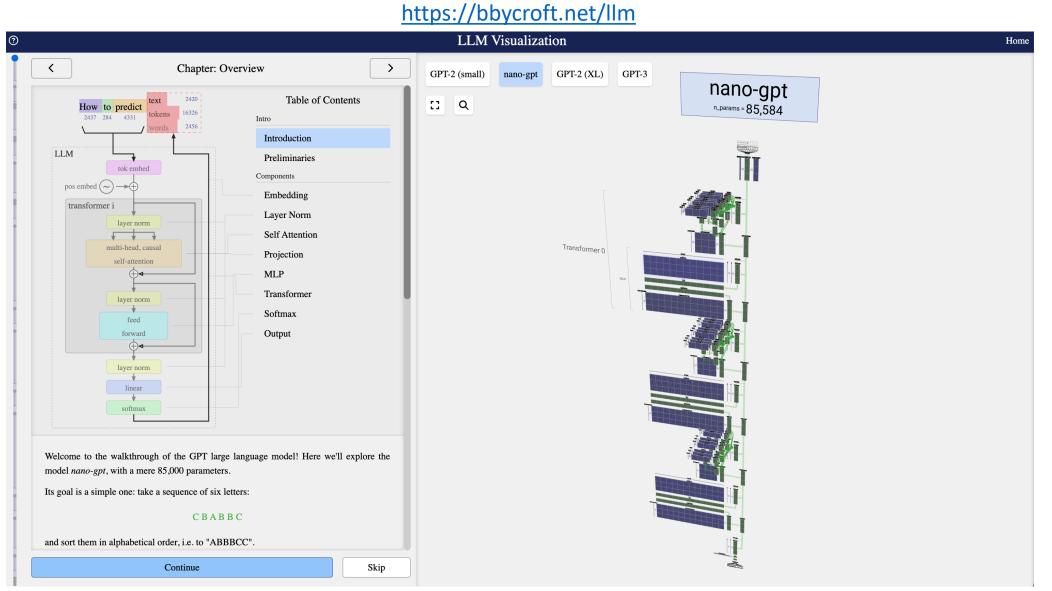
Super informal overview

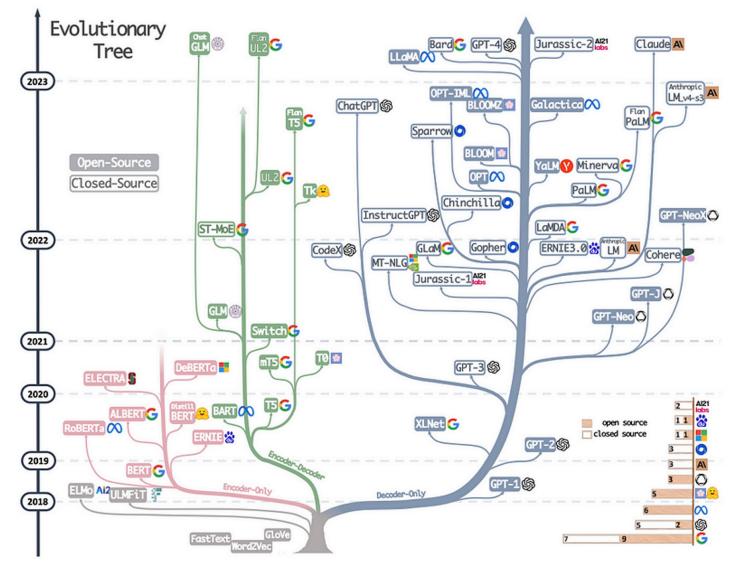

- A paradigm shift for sequence modeling
- No recurrence, no convolutions
- Differentiable, probabilistic key/value store

Advantages

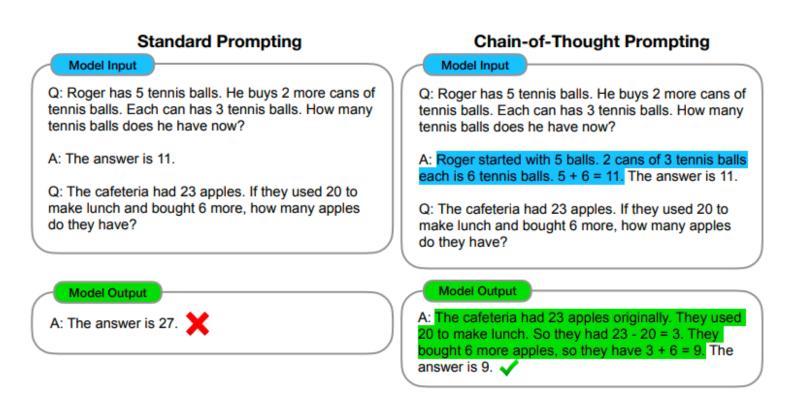
- Efficient: parallelized over thousands of GPUs
- Easy to implement
- Flexibility in architecture design for a given task

Moreover ...


- All modern LLMs use (variants of) Transformers
- Interpretable using Attention Maps


LLM Architectures: Visualization

An explosion of open/closed source models https://blog.sylphai.com/introduction-to-large-language-models


Training Strategies

General strategies

- Autoregressive pre-training
- Prompts (post-training)
 - In-context learning
 - Zero/Few-shot learning

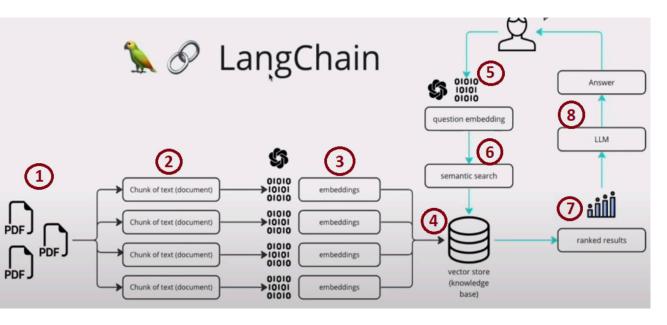
Specialized strategies

- RLHF (GPT 3.5-Turbo)
- DPO and variants
- LORA → toward fine tuning

Fine Tuning: can we use private data?

Key idea: enrich the context with indexed information

- Use your own data (many input sources!)
- Find which one is relevant given a prompt
- Inject it in the context and re-run the prompt
- Obtain references to your own data in LLMs answers!


LangChain, LLAMA Index, ...

- Break data into chunks
- Use data and prompt embeddings
- Vector-DB, in-memory indexing

Careful engineering required!

- Lots of moving parts, configurations, ...
- Many embedding models to manage

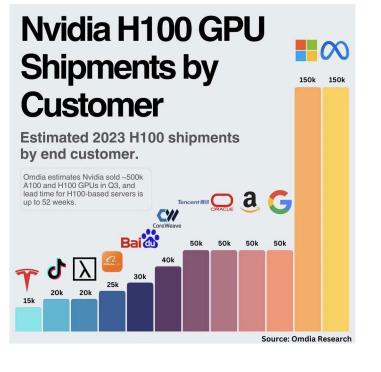
User

Should I own my LLM?

Computational considerations

• Be ready to become a GPU-farm master + distributed systems wizard

Data considerations

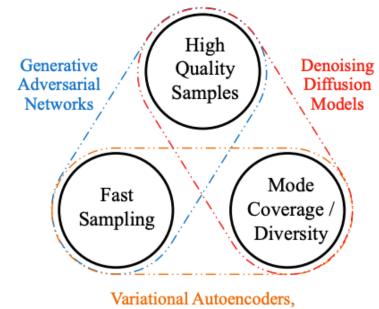

• Be ready to spend a lot of time on building solid data pipelines

Engineering considerations

• Highly skilled systems engineers, machine learning specialists

Additional considerations

- Model serving, a.k.a. inference
- Life-cycle management
- Common problems to deal with: hallucination


GenAl for Computer Vision

A well studied ML/CV domain

- Given new data, estimate how likely it is
- Given noise, transform it into data
- Examples: VAE, GANs, Normalizing Flows ...

The generative trilemma

- Quality: often measured by additional ML models
- **Diversity**: difficult to assess, scoring mechanisms exist
- **Speed**: how much time to generate an image?

Normalizing Flows

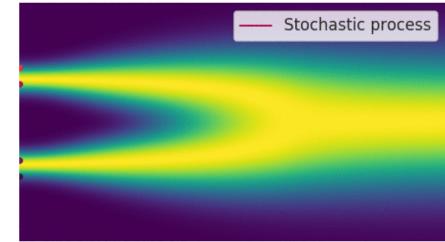
Diffusion Models: the Ugly

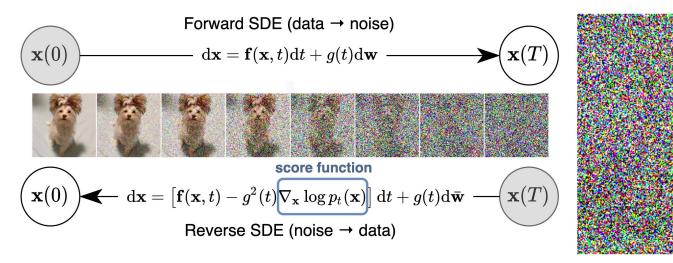
An SDE allows studying the evolution of a stochastic process $\mathbf{x}(t)$:

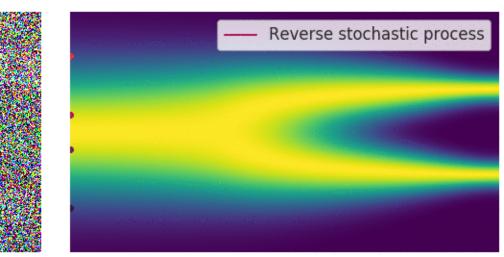
$$\mathbf{dx}(t) = \mathbf{f}(\mathbf{x}(t), t)dt + \sqrt{2}\mathbf{D}(\mathbf{x}(t), t)\mathbf{dw}(t)$$

- $\mathbf{f}(\cdot, \cdot) : \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}^N$, drift
- $\mathbf{D}(\cdot, \cdot) : \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}^{N \times M}$, diffusion matrix
- $\mathbf{w}(t)$, Wiener process. Informally, $\mathbf{dw}(t) \sim \mathcal{N}(\mathbf{0}, dt\mathbf{I})$

Diffusion Models: the Intuition


Key idea: can we use physics to generate images?

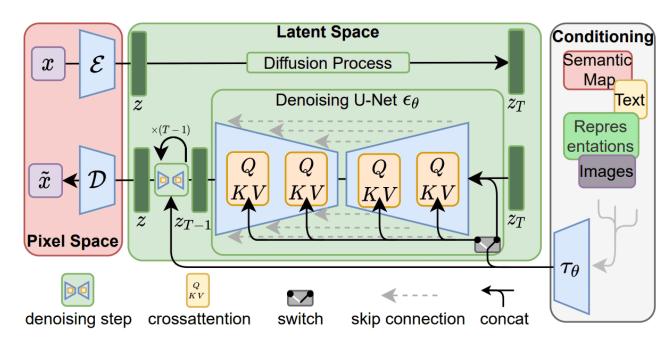

- Forward dynamics: **perturb** data **with noise**
- Backward dynamics: learn to denoise data


It works because we have a secret ingredient!

- Thermodynamics principles are preserved
- The score: once learned, we can sample noise and generate new images!

Diffusion Models: Conditional Generation

Stable diffusion


- Also known as latent diffusion
- Projects data to a latent space
- Denoiser + attention instills semantics

Conditional generation

- Allows incorporating external signal
- E.g.: text prompt steers image generation

Prompt engineering

- More of an art than science
- Consistent results are not easy to obtain!
- New trend: (live) image editing

Diffusion Models: Unusual Applications!

Reconstructing the Mind's Eye:

fMRI-to-Image with Contrastive Learning and Diffusion Priors

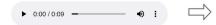
Paul S. Scotti^{1,2*}, Atmadeep Banerjee^{2*}, Jimmie Goode^{†2}, Stepan Shabalin², Alex Nguyen¹, Ethan Cohen³, Aidan J. Dempster⁴, Nathalie Verlinde¹, Elad Yundler⁵, David Weisberg^{1,2}, Kenneth A. Norman^{‡1}, and Tanishq Mathew Abraham^{‡2,6,7}

¹Princeton Neuroscience Institute, ²Medical AI Research Center (MedARC), ³Ecole Normale Supérieure, PSL University, ⁴University of Toronto, ⁵Hebrew University of Jerusalem, ⁶EleutherAI, ⁷Stability AI

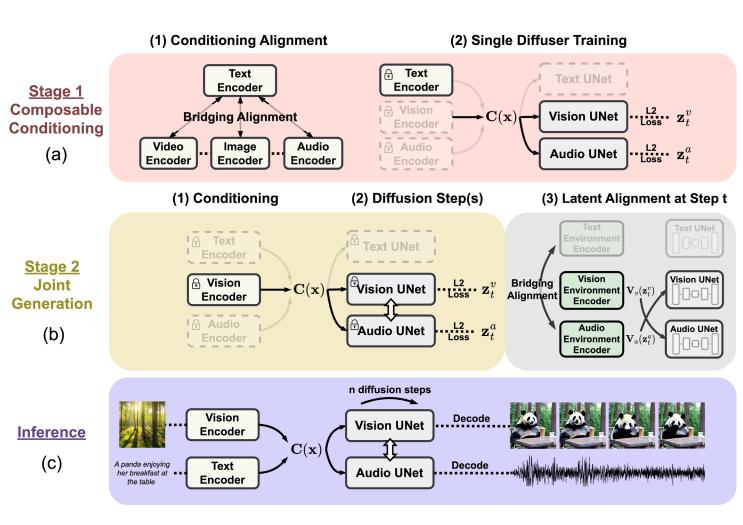
Seen image Reconstruction Seen image Reconstruction Seen image Reconstruction Seen image Reconstruction Seen image Reconstruction

Multimodal Diffusion Models


Audio + Image → Text + Image


Text → Video + Audio

"Train coming into station."



Text + Audio → Video

"Forward moving camera view."

Conclusion

Exciting new technology, some claim major industrial revolution

- Integration with MS Office, Google Workspace, etc ...
- GenAl for source code generation, analysis, bug fixing, etc ...
- Augmented intelligence! Not there to "replace" humans!

Technology is still in its infancy

- Causal reasoning, world model are not there yet
- Use tons of human-generated data. Memorization? Legal issues?

Way ahead ...

- Quantification of **uncertainty: your model should know when it does not know**
- Better alignment of prompts to images: Generative Semantic Nursing
- Multi-modality for conversational agents

Thank you!

Prof. Pietro Michiardi

