

ETSI AI Conference 2024

Overview of AI Specification in Experiential Networked Intelligence (ENI)

Presented by: Dr Raymond Forbes Chair ISG ENI

ENI Members and Participants

Officials

Network technology evolution

- Rapidly changing network conditions
- More services, more users

Network intelligence

Network mgmt. and operation evolution

- Human decisions
- Complex manual configuration

Orchestration and operation intelligence

ENI

- Network perception and analysis
- Data driven policy
- AI-based closed-loop control

Enhanced network experience

Better customer experience

Improved QoE of service

Increased service value

Improved business efficiency

Reduced OPEX

Increased profit

5G/IoT automation

Better QoE service delivery

Source: ETSI - White Papers | ICT White Papers ETSI three ENI White Papers,

ETSI WP22 Improved operator experience through Experiential Networked Intelligence (ENI) (etsi.org)

ETSI WP44 ENI Vision.pdf

ETSI WP51 Understanding the Operator Experience Using Cognitive Manage.pdf

Release highlights

Release 1

- Definition of "operator experience" for a data driven network.
- Specify a set of use cases, the functional architecture, for a network supervisory assistant system
- Use of the 'observeorient-decide-act' control loop model.
- This model can assist decision-making systems,
- 5. PoC proof of concept studies.

Release 2

- 1. Specify detailed use cases, more requirements.
- 2. the functional architecture in terms of functional blocks and a semantic bus.
- Recursion and Interactive calling of the functional block using of the 'observe-orient-decide-act' model.
- 4. Both recommendation systems and Automatic systems.
- Initial studies of Intent based functions & Telemetry.
- 6. Automomiticity network categories

Release 3

- 1. A White paper describing Cognitive management.
- 2. Definition of Knowledge management and Intent based stems for a data driven network.
- 3. Specify a set of APIs and information and data models for an automated system.
- 4. Interoperability of systems in PoCs Proof of Concept projects (19 projects).
- 5. Studies on transformers.
- 6. Handling of the Policy Management Model
- 7. Handling of Intent-based concept

Release 4

- Specification of Cognitive management.
- 2. Specify Knowledge management and Intent based stems for a data driven network.
- Specify more of APIs and information and data models with the use of policy, transformers and LLMs.
- 4. Publication of a specification on transformers.
- 6. Specify the Policy Management Model, for OAMs
- 7. Specification of the Intent language its use in cognitive management and LLM.
- 8. Use of telemetry and network measurement evaluation based n classification

ENI Published Reports, Specifications

Published ENI deliverables (29 publications):

- ETSI GS ENI 001 V3.2.1 (2020-12) Published Use Cases (4 revisions, in revision)
- ETSI GS ENI 002 V3.2.1 (2020-12) Published Requirements (4 revisions, in revision)
- ETSI GR ENI 003 V1.1.1 (2018-05) Published Context-Aware Policy Man.
- ETSI GR ENI 004 V3.1.1 (2021-12) Published General Terminology (4 Revisions, in revision)
- ETSI GS ENI 005 V3.1.1 (2021-12) Published System Architecture (2 Revisions, in revision)
- ETSI GS ENI 006 V2.1.1 (2020-05) Published PoC Framework (2 Revisions)
- <u>ETSI GR ENI 007 V1.1.1 (2019-11)</u> Published Definition of Categories
- ETSI GR ENI 008 V2.1.1 (2021-03) Published Intent Aware Net. Autonomicity
- ETSI GR ENI 009 V1.2.1 (2021-06) Published Data Mechanisms (2 revisions, in revision)
- <u>ETSI GR ENI 010 V1.1.1 (2021-03)</u> Published Evaluation of categories (in revision)
- ETSI GR ENI 012 v1.1.1 (2022-03) Published Reactive In-situ flow information Telemetry
- <u>ETSI GR ENI 013 v1.1.1 (2024-01)</u> Published ENI Intent Policy Model
- ETSI GR ENI 016 V2.1.1 (2021-07) Published Functional Concepts
- ETSI GR ENI 017 V2.1.1 (2021-08) Published Control Loop Archit. (in revision)
- ETSI GR ENI 018 V2.1.1 (2021-08) Published AI Mechanisms
- ETSI GS ENI 019 V3.1.1 (2024-06) Published Representing, Inferring and Proving Knowledge in ENI (in revision)
- ETSI GR ENI 035 V4.1.1 (2024-12) Published Definition of IP networks autonomicity level recently published

Ongoing ENI Work Items and Rapporteurs: Reports, Specifications & Work plan

- ENI 001 (WI RGS/ENI-001v411) Revision to start June 2023 Use Cases (Release 3) – Chao Wu (NTT)
- ENI 002 (WI RGS/ENI-002v411) Revision to start June 2023 Requirements (Release 3) Haining Wang (Intel)
- ENI 004 (WI RGR/ENI-004v3411) Revision to start June 2023 General Terminology (Release 3) – Yu Zeng (China Telecom)
- ENI 005 (WI RGS/ENI-005v411) Revision to start June 2023
 System Architecture (Release 3) John Strassner (FutureWei)
- ENI 009 (WI RGS/ENI-0009v411) Revision to start Sept 2023
 Data mechanisms Hongdan Ren(China telecommunications)
- ENI 010 (WI RGR/ENI-0010v121) –draft in progress
 Measurement of Evaluation Categories for AI application to Networks Yu Zeng (China Telecom)
- ENI 015 (WI DGR/ENI-0025) nearly stable draft in progress
 Processing and Management of Intent Policy Ziting Zhang (China Telecom)
- ENI 017 (WI RGR/ENI-0017v221) Stable draft in progress Dec 2024
 Overview of Prominent Control Loop Architectures Sen Bian (AsiaInfo)
- ENI 019 (WI RGS/ENI-0019v411) Revision to start June 2023
 Representing, Inferring and Proving Knowledge in ENI John Strassner (Futurewei)
- ENI 030 (WI DGS/ENI-0030v411) Release 4 in approval before publication Transformer Architecture – John Strassner (Futurewei)
- ENI 031 (WI DGR/ENI-0031v311) Release 4 in approval before publication Fault maintenance network knowledge graphs Bingming Huang (China Unicom) •
- ENI 032 (WI DGR/ENI-0032v411) draft in progress iFit Deployment Scenarios – Giuseppe Fioccola (Huawei)
- ENI 033 (WI DGS/ENI-0033v411) draft in progress
 Definition, Requirements and Procedure of Intent Policy Multi-Stage Translating
 – Jingyu Wang (BUPT)
- ENI 034 (WI DGS/ENI-0034v411) draft in progress Conflict detection Jingyu Wang (BUPT)

- ENI 036 (WI DGR/ENI-0036v411) draft in progress
 Space-Ground Cooperative Network Slicing Yu Zeng (China telecommunications)
- ENI 037 (WI DGS/ENI-0037v411) draft in progress Coordination orchestration of multiple elements – Shoufeng Wang (Asia Info Inc.)
- ENI 038 (DGS/ENI-038v411) draft in progress
 Detailed Procedure of AI Models Centralized Management and Sharing;
 Hanting Duan (China telecommunications).
- ENI 039 (WI DGR/ENI-0039v411) 1st draft in progress
 Dataset for Large Language Model applied in the network field Hongdan Ren (China telecommunications)
- ENI 040 (WI DGS/ENI-0040v411) draft in progress Orchestration functional requirements specification for network OAM large models – Yu Zeng (China telecommunications)
- ENI 041 (WI DGS/ENI-0041v411) draft in progress
 Network knowledge management enhanced large models for network
 OAM Tiantian Lv (China telecommunications)
- ENI 042 (DGS/ENI-0042 v411) not yet started
 Collaborative Blockchain-Based Multi-Operator Co-Construction and Sharing; Rapporteur Zhongping Dong (China Telecommunications)
- ENI 043 (DGS/ENI-0043 v411) draft in progress Intelligent customer service based on large language model; Rapporteur Yupei Wang (China Telecommunications).
- ENI 044 (DGS/ENI-0044 v411) not yet started
 Interaction between network large language model and add-on components; Rapporteur Qiaoqiao Liu (China Telecommunications).
- ENI 044 (DGS/ENI-0044 v411) not yet started
 Interaction between network large language model and add-on components; Rapporteur Qiaoqiao Liu (China Telecommunications).

Main concepts: Use Cases

Infrastructure Management

Policy-driven IDC traffic steering

Handling of peak planned occurrences

Energy optimization using AI

Intelligent Optimization for Transmission Network

Energy saving in radio network

Network Operations

Policy-driven IP managed networks

Radio coverage and capacity optimization

Intelligent software rollouts

Intelligent fronthaul management and orchestration

Elastic Resource Management and Orchestration

Application Characteristic based Network Operation

Al enabled network traffic classification

Automatic service and resource design framework for cloud service

Intelligent time synchronization of network

Intelligent Content-Aware Real-Time Gaming Network

Service Orchestration and Management

Context aware VoLTE service experience optimization

Intelligent network slicing management

Intelligent carrier-managed SD-WAN

Intelligent caching based on prediction of content popularity

Service experience optimization of E2E slicing involving both OSS and BSS

Intent-based Cloud Management for VDI service

Intelligent vehicle diversified service fulfillment based on polymorphic network

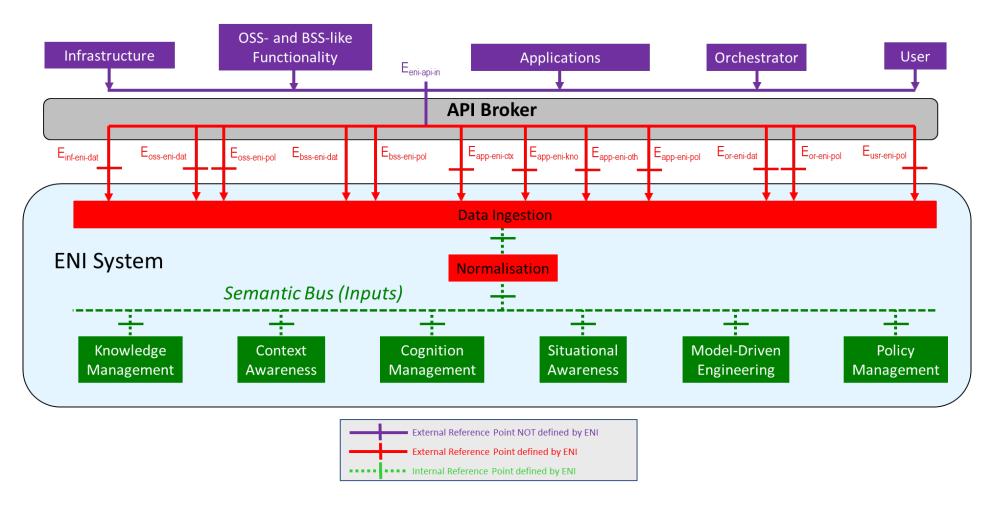
Al based family broadband network user experience optimization

Network Assurance

Network fault identification and prediction

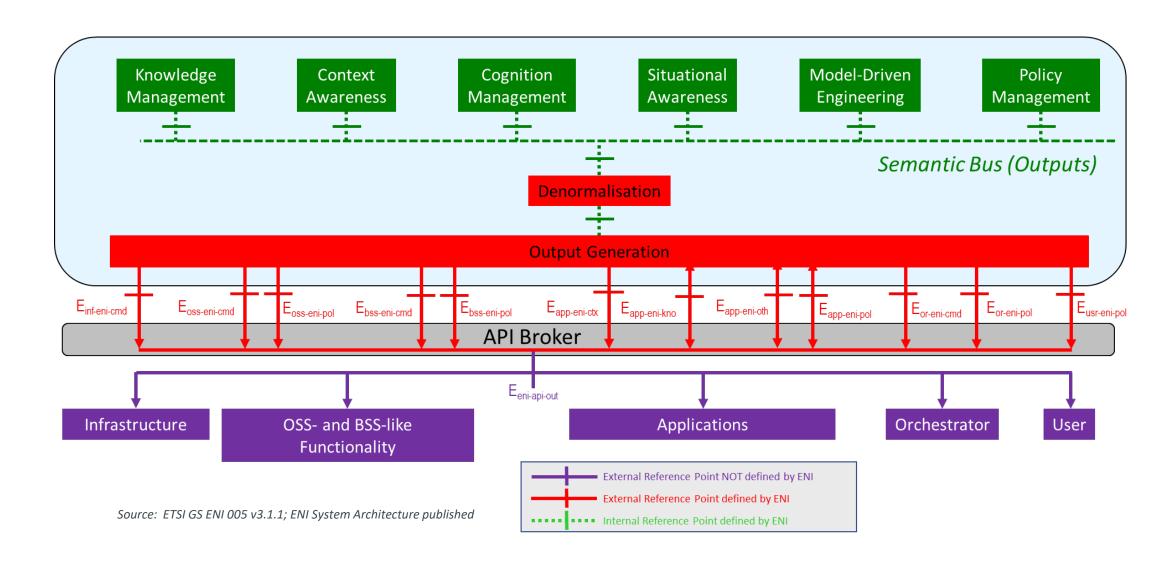
Assurance of Service Requirements

Network Fault Root-cause Analysis and Intelligent Recovery

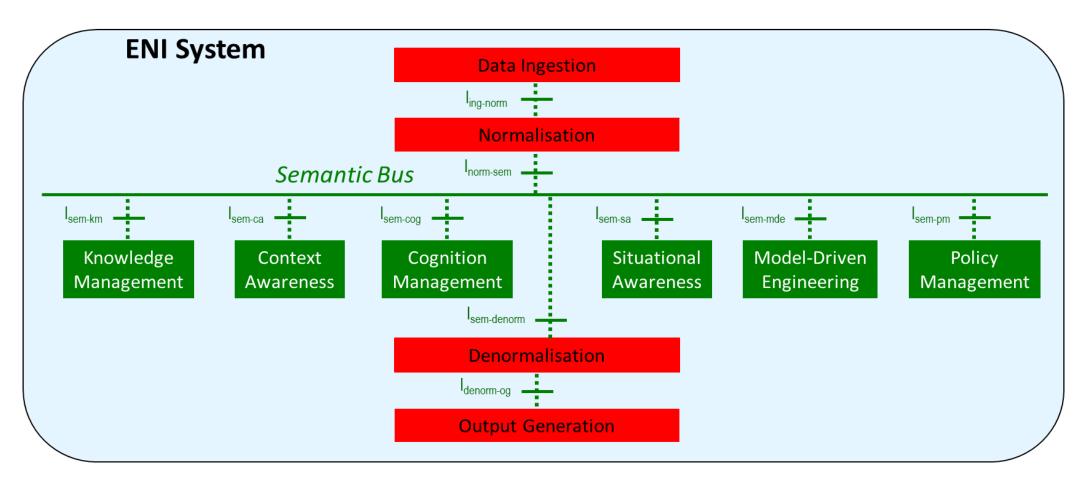

Network Security

Policy-based network slicing for IoT security

Limiting profit in cyber-attacks

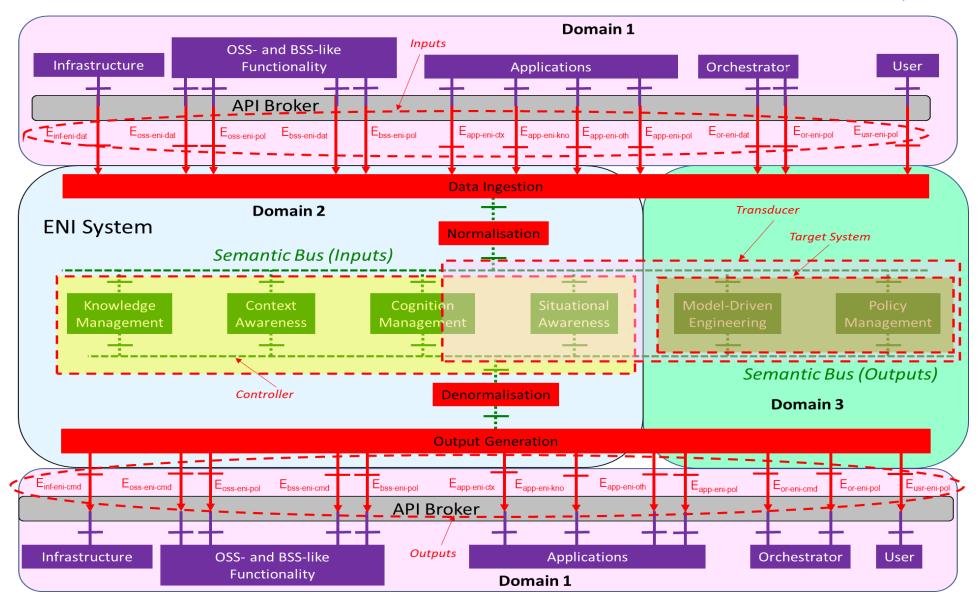

ENI Input External Reference Points

Source: ETSI GS ENI 005 v3.1.1; ENI System Architecture published

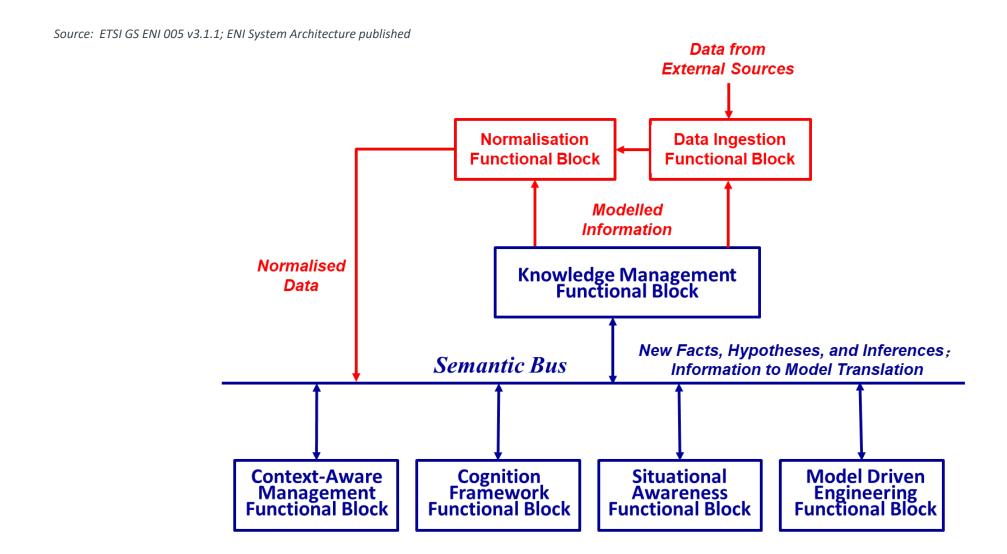


ENI Output External Reference Points

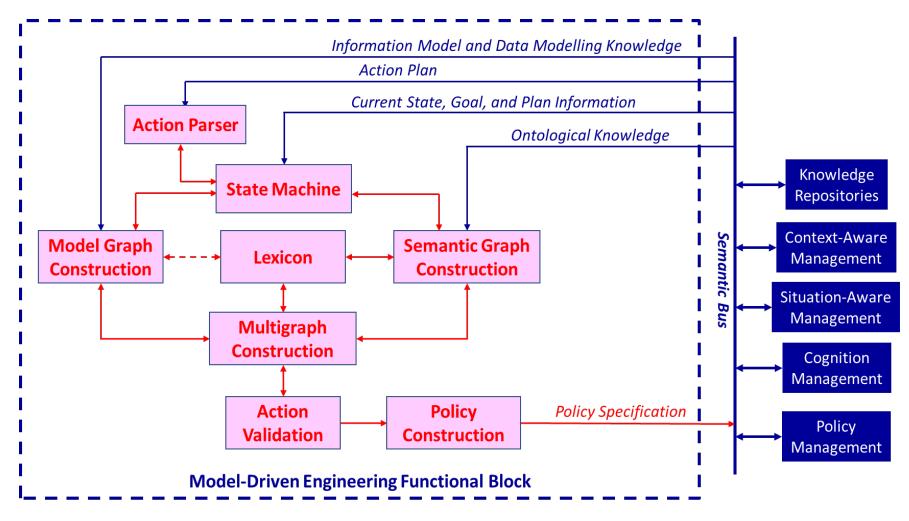
ENI Internal Reference Points



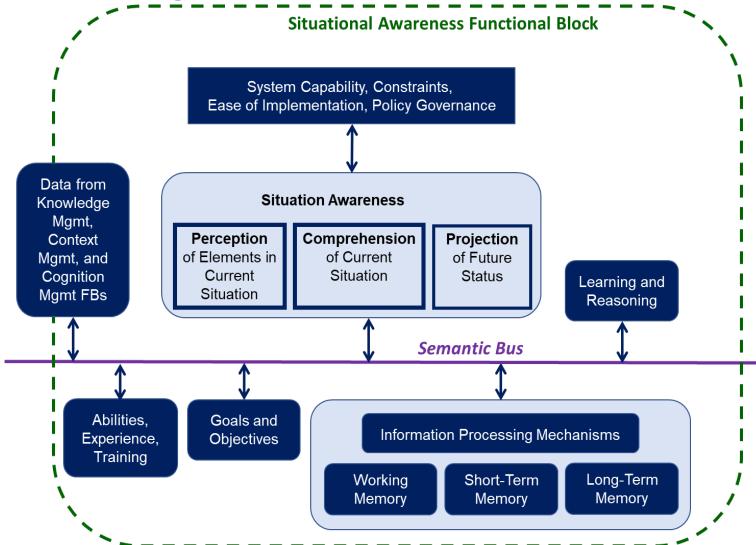
Source: ETSI GS ENI 005 v3.1.1; ENI System Architecture published


ENI Domains and Control Loops

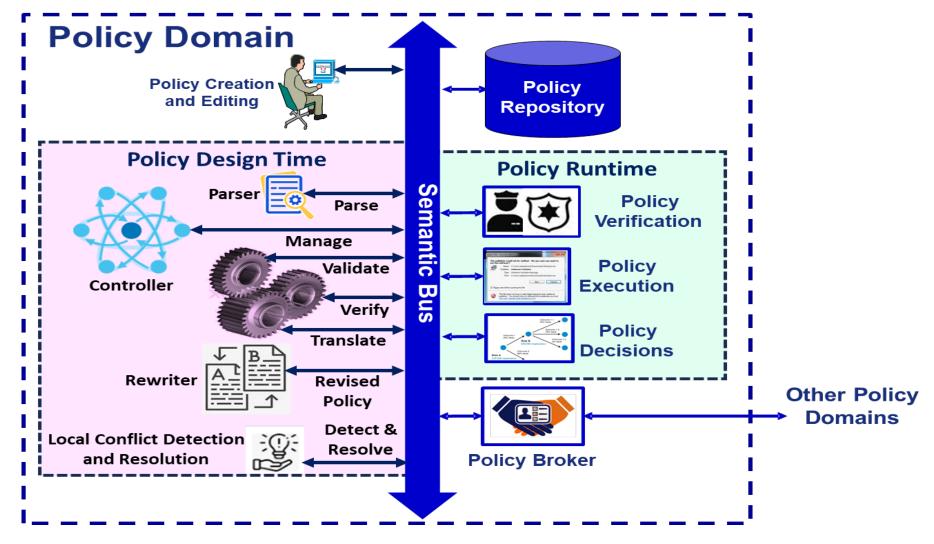
Source: ETSI GS ENI 005 v3.1.1; ENI System Architecture published



Normalizing Input Data in ENI

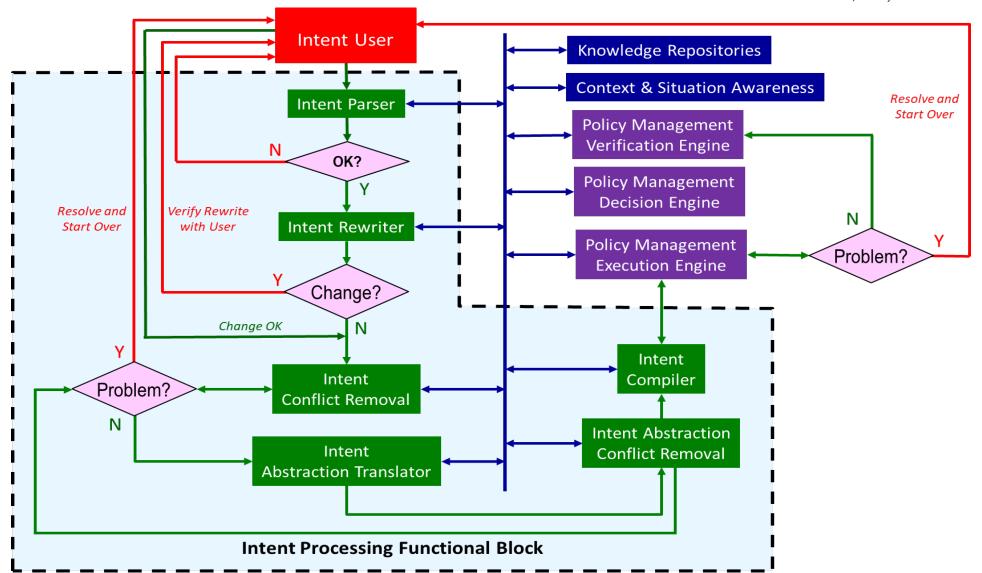


Overview of Model Driven Engineering

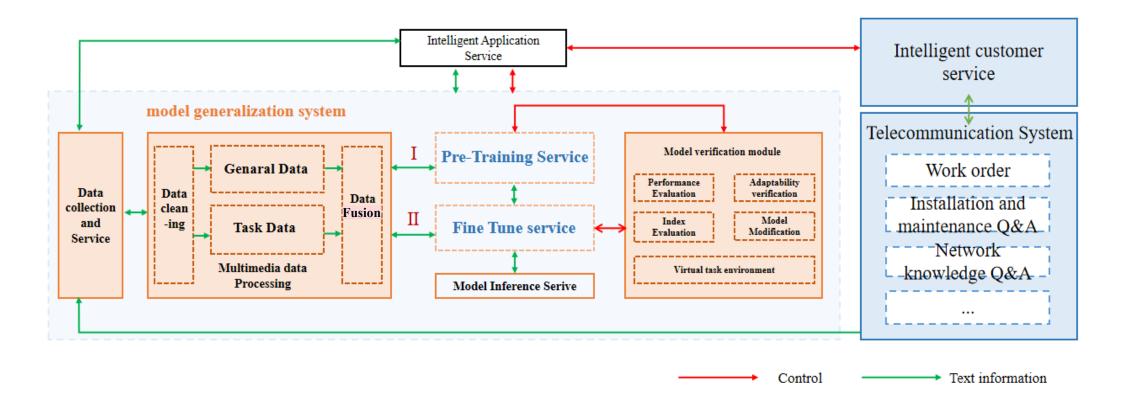


Cognitive Processing in ENI

High Level Policy Architecture



Source: ETSI GS ENI 005 v4.1.1; ENI System Architecture revision in drafting


ENI Intent Policy Control

Source: ETSI GS ENI 005 v3.1.1; ENI System Architecture published

Initial ideas on the Large Language model for telecom

Source: ETSI Drat GS ENI 043 v4.0.1; ENI Intelligent customer service based on large language model: Early draft

Definition of Categories for Al Application to Networks

Category	Name	Definition	Man- Machine Interface	Decision Making Participation	Data Collection and Analysis	Degree of Intelligence	Environment Adaptability	Supported Scenario
Category 0	Manual O&M	O&M operators manually control the network and obtain network alarms and logs	How (command)	All-manual	Single and shallow awareness (SNMP events and alarms)	Lack of AI based understanding (manual management and control)	Fixed	Single scenario
Category 1	Assisted O&M	Automated scripts are used in service provisioning, network deployment, and maintenance. Shallow perception of network status and machine suggestions for decision making	How (command)	Provide suggestions for machines or humans and help decision making	Local awareness (SNMP events, alarms, KPIs, and logs)	Limited analysis capability	Limited adaptability to changes	Selected scenarios
Category 2	Partial automation	Automation of most service provisioning, network deployment, and maintenance Comprehensive perception of network status and local machine decision making	How (declarative)	The machine provides multiple opinions, and the machine makes limited decisions	Comprehensive awareness (basic telemetry data)	Deep analysis capability	Limited adaptability to changes	Selected scenarios
Category 3	Conditional automation	In specific environmental and network conditions there is automatic network control and adaptation	How (declarative)	Most of the machines make decisions	Comprehensive and adaptive sensing (such as data compression and optimization technologies)	Comprehensive analysis and knowledge; Short-term forecast capability	Adaptability to significant changes	Multiple scenarios
Category 4	Partial autonomicity	Deep awareness of network status; in most cases the network performs autonomic decision-making and operation adjustment	What (intent)	Optional decision-making response	Adaptive posture awareness	Comprehensive analysis and knowledge Long-term forecast capability	Adaptability to significant changes	Multiple scenarios
Category 5	Full autonomicity	In all environmental and network conditions, the network can automatically adapt	What (intent)	Machine autonomous decision	Adaptive optimization as a consequence of quality of service deterioration	Autonomic evolution and knowledge reasoning	Adaptability to any change	Any scenario

ENI PoC List (Release 3 & 4)

Title	PoC Team Members	Main Contact	Start Time	Current Status (June 2024)
PoC#15: PINet—Polymorphic Intelligent Network	China Telecommunications China Telecommunications, China Mobile Research Institute, AsiaInfo Technologies Inc., Maipu Communication Technology Co., Ltd.	Ziting Zhang	Nov 2021	Completed
PoC#16: AI based family broadband network user experience optimization	China Mobile China Mobile Research Institute, AsiaInfo Inc., Intel	Bian Sen	October - 2022	Final report in review
PoC#17: Intelligent Satellite-Terrestrial Integration Network Architecture	China Telecommunications China Telecommunications, Tsinghua University, AsiaInfo Technologies Inc., Huawei (UK) Technologies Ltd., CNIT, CNR IST.	Yu Zeng	July 2024	Ongoing
PoC#18: Intent-driven Operating for User- Centric Cloud-Network Convergence Services	China Telecommunications China Telecommunications, AsiaInfo Technologies Inc., Huawei (UK) Technologies Ltd., BUPT, Xidan University.	Li Zhen	July 2024	Ongoing
PoC#19: Space-Ground Cooperative Network Slicing	China Telecommunications China Telecommunications, National Digital Switching System Engineering and Technology Research Center, CAICT, AsiaInfo Technologies Inc., Huawei (UK) Technologies Ltd	Yu Zeng	July 2024	Ongoing

Network Intelligence Events & Milestones between 2016 and 2024

- Forum on Network Intelligence, Dec'16, Shenzhen, China
- ENI & SDNIA Joint Forum, Sep'17, Beijing, China
- ENI & H2020-SliceNet Workshop, Dec'17, London, UK
- ENI & 5GPPP MoNArch Workshop, Jun'18, Turin Italy
- ENI presentation to ITU workshop, Aug'18, San Jose, CA, USA
- ENI & CCSA TC610 AIAN Joint Forum, Sep'18, Beijing, China
- ENI & 5Tonic Joint Workshop, Dec'18, Madrid, Spain
- ENI & Samsung joint Workshop, Apr'19, Warsaw, Poland
- ENI & Altice Lab / Portugal Telecom joint Workshop, Jul'19, Aveiro, Portugal
- ENI & China Telecom Research labs, workshop with CCSA TC 610 SNIA, September 2019
- ENI in the pandemic 4 plenaries online remote, Release
 2 progressed to near completion
- In 2020 6 deliverables approved
- Early 2021 ENI Release 3 start: 4 Work-items started initially
- Summer 2021 complete ENI Release 2; more Release 3
 Work-items started
- End of 2021 Release 2 finalized
- 2022 Release 3 definition approved, 4th term extension request approved by ETSI
- 2024 Release 3 completed release 4 started

Forum on Network Intelligence, Dec'16

ENI & SliceNet workshop, Dec'17

ENI & Altice Lab / Portugal Telecom Workshop, Jul'19

ENI & SDNIA Joint Forum on Network Intelligence, Sep'17

ENI & Samsung Workshop, Apr'19

Contact Details:

Chair: Dr. Raymond Forbes Raymond.Forbes@huawei.com

Please Contribute

+44 771 851 1361

ENI Activity Report
ENI Terms of Reference
ENI Participant Agreement
ENI Presentation

ENI membership list
ENI Published Deliverables
ENI Wiki and PoC info

White Paper 22
White Paper 44
White paper 51
ENI Open Area

ENI Blog
ENI Webpage
ENI Release 4
ENI Release 3