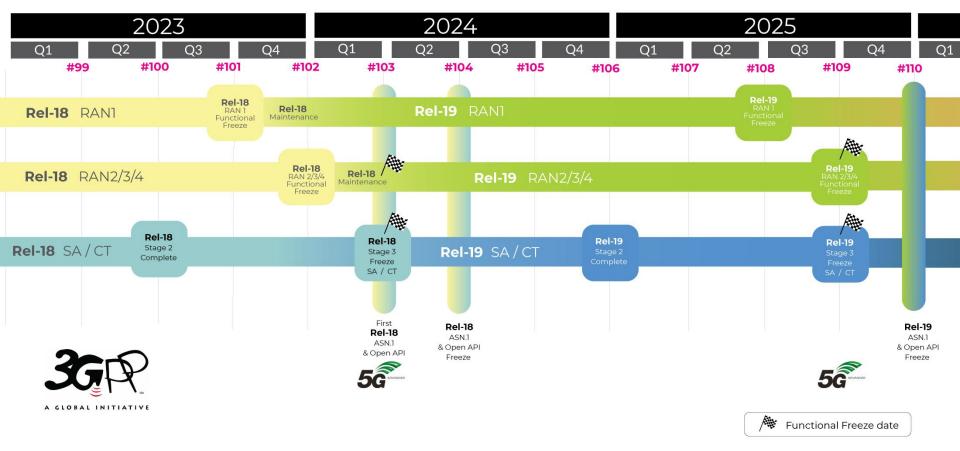


ETSI AI Conference 2024

Overview of AI/ML support related work in 3GPP 5G/5G-Adv Systems

Presented by: Puneet Jain

3GPP SA Chair Sr. Director, Intel Corporation


Acknowledgement

• Thanks to 3GPP delegates, especially SA2 Rapporteurs Tricci So and Xiaobo Wu, for their valuable support in preparing the content of this presentation.

3GPP Rel-18 and Rel-19 timelines

AI/ML work in different 3GPP Working Groups

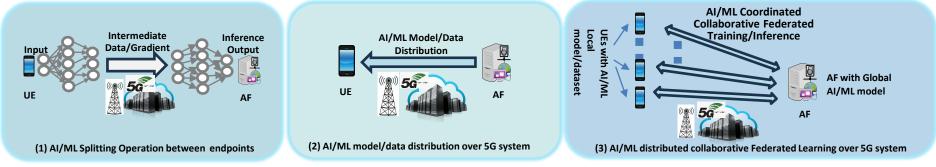
 SA WG-1 (SA1): Responsible for identifying service and performance requirements for 3GPP systems, in Rel-18, SA1 focused on defining the AI/ML model transfer in 5G.

- ✓ SA WG-2 (SA2): Responsible for developing system architecture, in Rel-18, SA2 worked on 5G system support for intelligent transport for the AI/ML-based services.
- **SA WG-3 (SA3):** Responsible for security and privacy aspects. For AI/ML, SA3 examined and determined the system security and privacy impacts towards 5G Core when supporting AI/ML-based network services and applications.
- ✓ SA WG-4 (SA4): Responsible for defining media codec for the system and delivery aspects of the media contents, inRel-18, SA4 defined the AI/ML for media.
- ✓ SA WG-5 (SA5): Responsible for management, orchestration, and charging for 3GPP systems, in Rel-18, SA5 defined AI/ML based management functions and the AI/ML management operations to coordinate AI/ML functions across 5G system.
- SA WG-6 (SA6): SA6 is looking for AI/ML services at the Application enablement Layer. SA6 investigates the possible impacts of application layer support for AI/ML services for different deployments and business models.
- RAN WG-3 (RAN3): Responsible for the overall RAN architecture and the specification of protocols for the related network interfaces, in Rel-17 and 18, RAN3 defined the initial support for AI/ML for next-generation RAN (NG-RAN).
- ✓ RAN WG-1, 2, and 4 (RAN1, RAN2, and RNA4): Responsible for the physical layer, radio layer, and performance of the radio Interfaces for UE, Evolved UTRAN, NG-RAN, and beyond, respectively, in Rel-18, these WGs define AI/ML for new radio (NR) air interface which is led by RAN1.

SA6 investigates the possible impacts of application layer support for AI/ML services at the Application enablement Layer.

SA2 defines the system architecture to support AI/ML based services

SA5 defines the management, orchestration & charging to coordinate AI/ML support within 3GPP


VE RN SG Core AF AF ARN3 defines RAN architecture & network I/F to support AI/ML-based network services and applications

RAN1, 2, 4 specify physical & radio layers as well as performance, respectively to support Al/ML

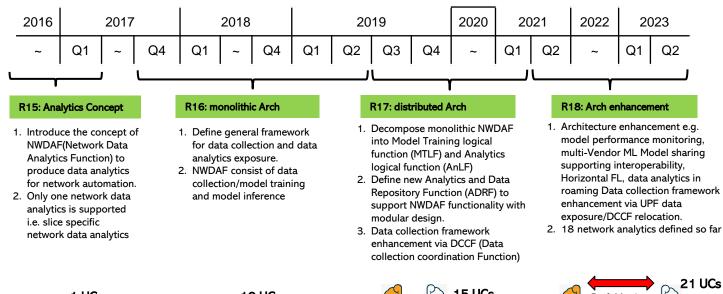
SA1 Services & Performance Definitions & Requirements

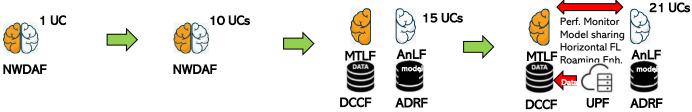
Defining 3 AI/ML Model Transfer use cases:

Defining AI/ML Service Requirements:

- ✓ Identify the AIML related key requirements to Uu interface, including
 - Candidate member selection for Federated Learning (FL)
 - Aggregated QoS management for Federated Learning
 - In-time exposure of Network status, Event alerting (e.g. QoS prediction) to the authorized AIML application
 - Network resource monitoring for an authorized AIML application

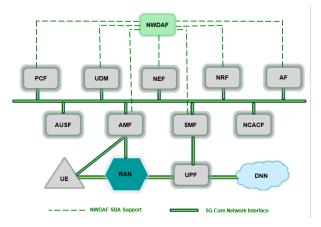
NOTE: The applicability of the requirements is subject to operator policy, user consent, and regulatory requirements

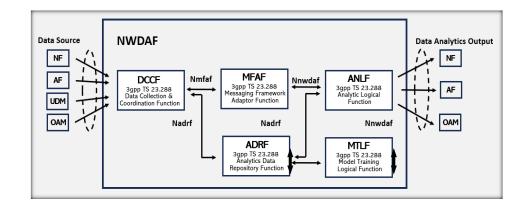

Defining AI/ML Performance Requirements:


✓ Specify KPIs for AI/ML model transfer in 5G system, including end-to-end latency, experienced data rate, reliability, and communication service availability, among others.

NOTE: 3GPP SA1 Requirements for AI/ML are specified in TS 22.261.

SA2 enablers for Network Automation (eNA) evolution




SA2 architecture enhancement for network AI/ML operation (eNA) 37

What Is Network Data Analytics Function (NWDAF)?

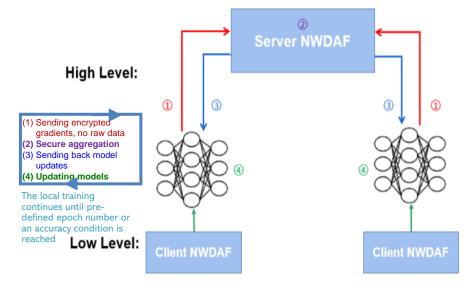
NWDAF as defined in 3GPP TSs 23.288 & 29.520 incorporates standard interfaces from the service-based architecture to collect data, provide analytics, trained ML models by subscription or request model from other network functions. This is to deliver analytics functions in the network for automation or reporting, solving major custom interface or format challenges.

Group of standard functions that are defined by 3GPP for data analytics to support 5G Network Operation:

- NWDAF-ANLF Analytical Logical Function
- NWDAF-MTLF Model Training Logical Function
- DCCF Data Collection Coordination (& Delivery) Function
- ADRF Analytical Data Repository Function
- □ MFAF Messaging Framework Adaptor Function

SA2 Architecture Enhancement for Federated Learning (eNA)

Referring to 3GPP TS 23.288, clause 5.3

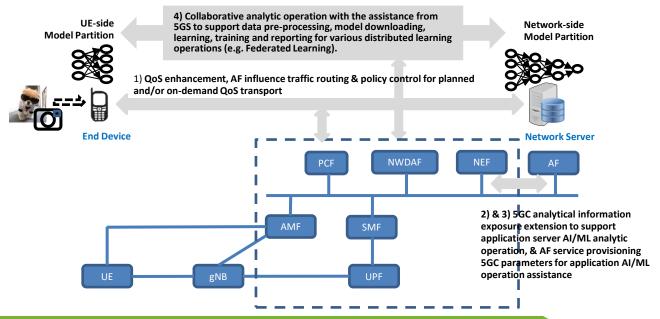

Federated learning among multiple NWDAFs is a machine learning technique in core network that trains an ML Model across multiple decentralized entities holding local data set, without exchanging/sharing local data set.

This approach stands in contrast to traditional centralized machine learning techniques where all the local datasets are uploaded to one server, thus allowing to address critical issues such as data privacy, data security, data access rights.

When starting an FL procedure, the FL server NWDAF is to provide an initial model to each FL client NWDAF, and then each FL client NWDAF is to perform local model training using their local data set.

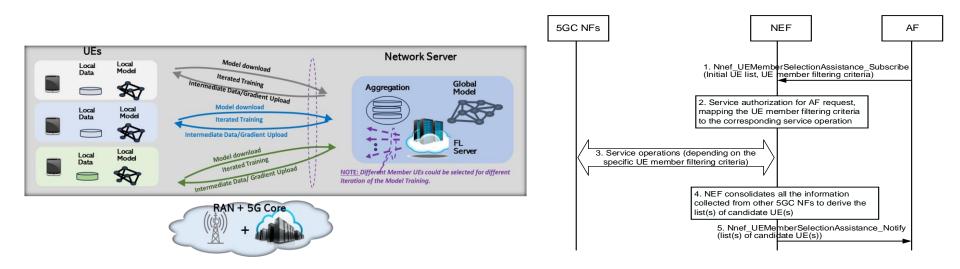
NOTE: Rel-18 defined horizontal federated learning (HFL). Vertical federated learning (VFL) uses different datasets of different feature space to jointly train a global model (Rel-19 study focus).

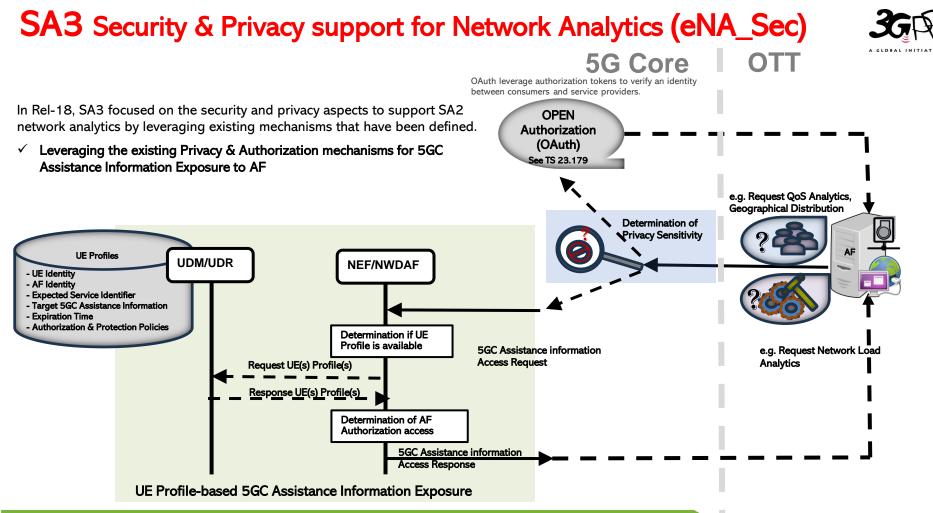
Basic Architecture Framework for Federated Learning is supported in TODAY 5G Core



SA2 Architecture Enhancement for Application AI/ML Operation (AIMLsys)

In Rel-18, 5G Core is extended to assist Application AI/ML operation. AF remains to control the logic of the application layer AI/ML operation while 5GC:


- 1) Enabling application influence on traffic routing and policy control to provide planned or on demand QoS transport.
- 2) Extending the network exposure function (NEF) in 5GC to support monitoring and configuration capability for detection and/or reporting of monitoring events to authorized external party
- 3) Enhancing provisioning capability to allow the external party to provision information to 5GC to facilitate the support of application layer AI/ML operation in 5G system.
- 4) Enabling 5G system assistance to assist application layer federated learning operation (see next slide for more info).



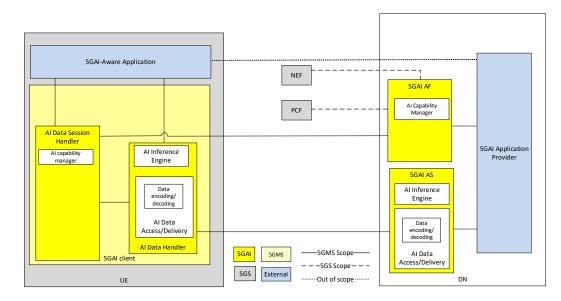
SA2 Architecture Enhancement for Application AI/ML Operation (AIMLsys) – Application Layer Horizontal Federated Learning (AL-HFL) Support

- 5G Core provides assistant to support Application layer Federated Learning operation, including
- 1) Candidate FL member selection according to specific set of selection criteria (e.g. UE performance, location and trajectory, network resource availability etc.)
- 2) Real time Aggregated QoS monitoring to monitor the QoS usage for the FL task
- 3) Proper time window negotiation with required QoS in order to perform FL and other AIML model transfer service

SA3 Security & Privacy support for network AI/ML operation

Security Goal	Procedure	References
Authorization of NF Service Consumers	Procedure for NF Service Consumer authorization to access data via DCCF, including token generation and service request initiation.	Annex X. TS 33.501
Data Security in Messaging Framework	Focus on confidentiality, integrity, and replay protection in data transfer between 3GPP entities and MFAF.	Annex X. TS 33.501
Protection of Data Between AF and NWDAF	Secure transfer of UE data over SBA interface, ensuring integrity and confidentiality in data exchange.	Annex X. TS 33.501
User Consent Requirements	Compliance with regulatory requirements and document standards for network automation.	Annex V, TS 23.288

□ In Rel-18

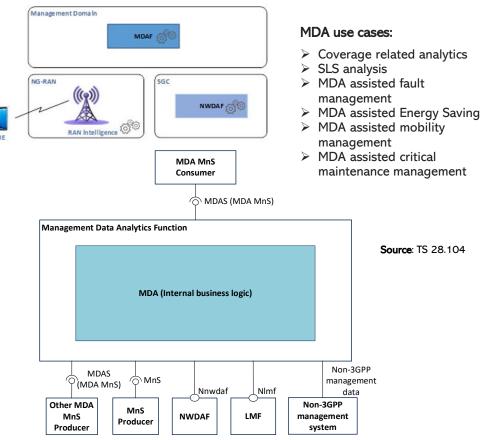

- > eNA_Sec, SA3 has identified and provided security requirements and procedures for the Network Automation features.
- AIMLsys_Sec, SA3 had a study on the Security and Privacy of AI/ML-based Services and Applications in 5G. No normative work was pursued.
- FS_NR_AIML_NGRAN_SEC, SA3 also focused on the security and privacy aspects to support the RAN3 Rel-18 AI/ML Framework (see later slide on RAN3 reporting). The study concluded that there are no new potential security threats and existing security methods are sufficient. No normative work was pursued.

SA4 AI/ML for Multi-media (AI4Media)

Main Objectives – Defining media service architecture for AI/ML and relevant service flows; in addition, determining the data formats and protocols for various types of data components for AI/ML-based media services, traffic characteristics of the data components delivered over 5G and the respective KPIs.

When applying AI/ML for media, one main consideration is *the splitting the AI/ML inference between network and UE*. Split points can depend on a number of factors including UE capabilities (e.g., memory, compute, energy consumption, and inference latency), network conditions (e.g., capacity, load, and latency), model characteristics, and user/task specific requirements (e.g., delay and privacy).

Al data delivery general architecture


Source: 3GPP TR 26.927

SA5 AI/ML based Management and Orchestration In 5G System

SA5 started the Management Data Analytics (MDA) in Rel-17 and continues the AI/ML management specifications development in Rel-18 on the concepts and operational workflows, as well as to address a wide range of use cases (for MDA capabilities) along with the corresponding potential requirements and solutions for the management capabilities and services required for AI/ML training & inference phases.

Management Data Analytics Service (MDAS), the services exposed by the MDA, can be consumed by various consumers, including for instance MnFs (i.e. MnS producers/consumers for network and service management), NFs (e.g. NWDAF), SON functions, network and service optimization tools/functions, SLS assurance functions, human operators, and AFs, etc.

A management function (MDAF) may play the roles of MDA MnS producer, MDA MnS consumer, other MnS consumer, NWDAF consumer and LMF service consumer, and may also interact with other non-3GPP management systems.

MDA functional overview and service framework

SA5 AI/ML Management Operations

SA5 Management AI/ML Operation Workflow	Emulation	.	
Training Phase	Phase	Deployment Infe Phase Pha	rence
ML training ML Testing Manage the training and testing process	AI/ML Emulation Evaluate Inference Performance	Load Trained ML Entity To Inference function	Al/ML Inference Performing Inference
	CTT Optional	Sequence of flows	5

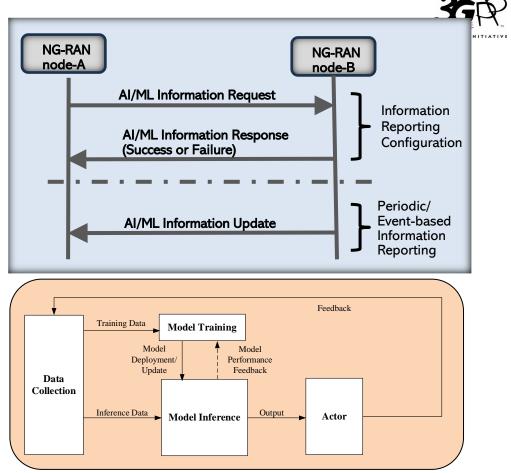
Category	Use cases			
Management Capabilities for ML tr	aining phase			
Event data for ML training	Pre-processed event data for ML training			
ML entity validation	ML entity validation performance reporting			
ML entity testing	Consumer-requested ML entity testing			
	Control of ML entity testing			
	Multiple ML entities joint testing			
ML entity re-training	Producer-initiated threshold-based ML Retraining			
	Efficient ML entity re-training			
	ML entities updating initiated by producer			
ML entity joint training Support for ML entity modularity – joint training of ML entities				
Training data effectiveness	Training data effectiveness reporting			
	Training data effectiveness analytics			
	Measurement data correlation analytics for ML training			
ML context management	ML context monitoring and reporting			
	Mobility of ML Context			
	Standby mode for ML entity			
ML entity capability discovery and	Identifying capabilities of ML entities			
mapping	Mapping of the capabilities of ML entities			
Performance evaluation for ML	Performance indicator selection for ML model training			
training	Monitoring and control of AI/ML behavior			
	ML entity performance indicators query and selection for ML training			
	ML entity performance indicators selection based on MnS consumer policy for ML training			
Configuration management for ML training	Control of producer-initiated ML training			
ML Knowledge Transfer Learning	Discovering sharable Knowledge			
,,	Knowledge sharing and transfer learning			
Management Capabilities for ML em				
ML Inference emulation	AI/ML Inference emulation			
	Orchestrating ML Inference emulation			

Category	Use cases					
Management Capabilities for ML entity deployment phase						
ML entity loading	ML entity loading control and monitoring					
Management Capabilities for AI/ML inference phase						
AI/ML Inference History	Tracking AI/ML inference decisions and context					
Orchestrating AI/ML Inference	Knowledge sharing on executed actions					
	Knowledge sharing on impacts of executed actions					
	Abstract information on impacts of executed actions					
	Triggering execution of AI/ML inference functions or ML entities					
	Orchestrating decisions of AI/ML inference functions or ML entities					
Coordination between the ML	Alignment of the ML capability between 5GC/RAN and 3GPP management system					
capabilities						
Performance evaluation for AI/ML	AI/ML performance evaluation in inference phase					
inference	ML entity performance indicators query and selection for AI/ML inference					
	ML entity performance indicators selection based on MnS consumer policy for					
	AI/ML inference					
	AI/ML abstract performance					
Configuration management for	ML entity configuration for RAN domain ES initiated by consumer					
AI/ML inference	ML entity configuration for RAN domain ES initiated by producer					
	Partial activation of AI/ML inference capabilities					
	Configuration for AI/ML inference initiated by MnS consumer					
	Configuration for AI/ML inference initiated by producer					
	Enabling policy-based activation of AI/ML capabilities					
AI/ML update control	Availability of new capabilities or ML entities					
	Triggering ML entity update					
Common management capabilities for ML training and AI/ML inference phase						
Trustworthy Machine Learning	AI/ML trustworthiness indicators					
	AI/ML data trustworthiness					
	ML training trustworthiness					
	AI/ML inference trustworthiness					
	Assessment of AI/ML trustworthiness					

Trustworthiness is identified as a **common** management capability for both the training phase and the inference phase.

- Trustworthiness = AI/ML models {robust, explainable, and fair}.
- Trustworthiness Indicator configurable and be monitored/evaluated according to Risk & Use Case(s).
 - Preprocessing of training/testing/inference data may be needed according to the desired trustworthiness measure of the corresponding AI/ML model.

> AI/ML MnS producer should allow the consumer to query the AI/ML training producer, inference producer, and/or assessment producer about the supported trustworthiness capabilities and request the configuration, measurement, and reporting of a selected set of trustworthiness characteristics.



RAN3 AI/ML-enabled NG-RAN

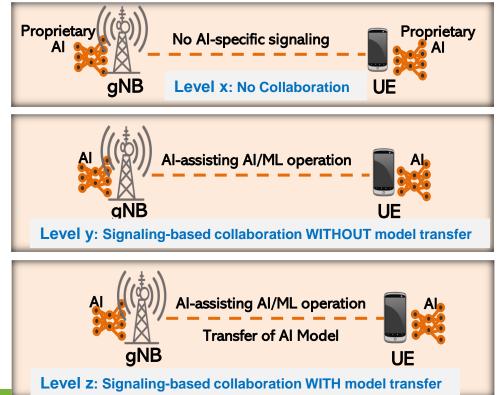
Objective: Improving network performance and user experience, through analyzing the data collected and autonomously process by the NG-RAN with signaling support for: (1) AI/ML based network energy saving, (2) Load Balancing, and (3) Mobility Optimization.

Principles:

- The Al/ML function requires inputs from neighbor NG-RAN nodes over Xn (e.g. predicted information such as cellgranularity UE trajectory, number of active UEs, RRC connections and radio resources, feedback information such as UE's UL/DL throughput performance, packet delay, PER, measurements such as energy efficiency metric etc.)
- Signaling procedures used for the exchange of AI/ML related information are use case and data type agnostic and not dependent on the input, output and feedback
- AI/ML algorithm and models as well as required performance are out of 3GPP scope
- Deployment options for RAN AI intelligence could be:
 - AI/ML model training is located in OAM and inference in gNB, or
 - both can be located in gNB

Functional Framework for RAN Intelligence (Source: TR 37.817)

RAN1&2 AI/ML for Air Interface (pave the way to 6G)


Objective: Establishing a general framework for enhancing the air interface using AI/ML – stages of AI/ML algorithms, collaboration levels between gNB and UE, required datasets for AI/ML model training, validation and testing, and life cycle management of AI/ML models.

Three training collaboration models under investigated:

- Level x: No collaboration
- Level y: Signaling-based collaboration without model transfer
- Level z: Signaling-based collaboration with model transfer

Focusing on 3 use cases:

- Channel state information (CSI) feedback Enhancement leveraging AI/ML techniques to improve CSI compression which includes an AI/ML-based CSI encoder at the UE and decoder at the gNB as well CSI Prediction.
- Beam management leveraging AI/ML techniques to reduce beam management overhead and latency, as well as improving beam selection accuracy via spatial & temporal prediction.
- Positioning leveraging AI/ML techniques to improve Direct AI/ML and AI/ML assisted positioning accuracy for different scenarios including those with heavy Non-line-of-sign (NLOS).

3GPP Rel-18 AI/ML Related Study/Work Items

3GPP Rel-18 AI/ML Related Study/Work Items	Acronym	Release	Working Group	% Completion	SID/WID
Study on Enablers for Network Automation for 5G - phase 3	FS_eNA_Ph3	Rel-18	SA2	100%	<u>SP-220678</u>
Enablers for Network Automation for 5G phase 3	eNA_Ph3	Rel-18	SA2	100%	<u>SP-230110</u>
Study on security aspects of enablers for Network Automation for 5G - phase 3	FS_eNA_SEC_Ph3	Rel-18	SA3	95%	<u>SP-220199</u>
Security aspects of enablers for Network Automation for 5G - phase 3	eNA_Ph3_SEC	Rel-18	SA3	65%	<u>SP-230155</u>
CT3 aspects of eNA_Ph3	eNA_Ph3	Rel-18	СТЗ	90%	<u>CP-230119</u>
CT4 aspects of eNA_Ph3	eNA_Ph3	Rel-18	CT4	90%	<u>CP-230119</u>
Study on traffic characteristics and performance requirements for AI/ML model transfer in 5GS	FS_AIML_MT	Rel-18	SA1	100%	<u>SP-220441</u>
AI/ML model transfer in 5GS	AIML_MT	Rel-18	SA1	100%	<u>SP-220440</u>
Study on 5G System Support for AI/ML-based Services	FS_AIMLsys	Rel-18	SA2	100%	<u>SP-220071</u>
System Support for AI/ML-based Services	AIMLsys	Rel-18	SA2	100%	SP-231278
Study on Security and Privacy of AI/ML-based Services and Applications in 5G	FS_AIML	Rel-18	SA3	100%	<u>SP-220687</u>
CT3 aspects of AIML	AIMLsys	Rel-18	СТЗ	92%	<u>CP-230329</u>
CT4 aspects of AIML	AIMLsys	Rel-18	CT4	90%	<u>CP-230329</u>
Study on AI/ML management	FS_AIML_MGMT	Rel-18	SA5	100%	<u>SP-211443</u>
AI/ML management	AIML_MGT	Rel-18	SA5	80%	<u>SP-230335</u>
Management Data Analytics	EMDAS_Ph2	Rel-18	SA5	87%	<u>SP-220981</u>
NEF Charging enhancement to support AI/ML in 5GS	AIMLsysNEF_CH	Rel-18	SA5	0%	<u>SP-231706</u>
Study on Artificial Intelligence (AI) and Machine Learning (ML) for Media	FS_AI4Media	Rel-18	SA4	50%	SP-220328
Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR air interface	FS_NR_AIML_air	Rel-18	RAN1	100%	<u>RP-221348</u>
Artificial Intelligence (AI)/Machine Learning (ML) for NG-RAN	NR_AIML_NGRAN-Core	Rel-18	RAN3	80%	<u>RP-233441</u>
Study on the security aspects of Artificial Intelligence (AI)/Machine Learning (ML) for the NG-RAN	FS_NR_AIML_NGRAN_SEC	Rel-18	SA3	100%	<u>SP-220529</u>

3GPP Rel-19 AI/ML Related Study/Work Items

3GPP Rel-18 AI/ML Related Study/Work Items	Acronym	Release	Working Group	% Completion	SID/WID
Study on AI/ML Model Transfer Phase2	FS_AIML_MT_Ph2	Rel-19	SA1	100%	<u>SP-220439</u>
AI/ML Model Transfer Phase 2	AIML_MT_Ph2	Rel-19	SA1	100%	<u>SP-230514</u>
Study on Core Network Enhanced Support for Artificial Intelligence (AI)/Machine Learning (ML)	FS_AIML_CN	Rel-19	SA2	0%	<u>SP-231800</u>
Study on AI/ML management - phase 2	FS_AIML_MGT_Ph2	Rel-19	SA5	0%	<u>SP-231780</u>
Study on application layer support for AI/ML services	FS_AIMLAPP	Rel-19	SA6	35%	<u>SP-231182</u>
Study on enhancements for Artificial Intelligence (AI)/Machine Learning (ML) for NG- RAN		Rel-19	RAN3	0%	<u>RP-234054</u>
Study on Artificial Intelligence (AI)/Machine Learning (ML) for mobility in NR	FS_NR_AIML_Mob	Rel-19	RAN2	0%	<u>RP-234055</u>
Artificial Intelligence (AI)/Machine Learning (ML) for NR air interface	NR_AIML_air	Rel-19			
Core part: Artificial Intelligence (AI)/Machine Learning (ML) for NR air interface	NR_AIML_air-Core	Rel-19	RAN1	0%	<u>RP-234039</u>
Perf. part: Artificial Intelligence (AI)/Machine Learning (ML) for NR air interface	NR_AIML_air-Perf	Rel-19	RAN4	0%	<u>RP-234039</u>

Puneet Jain Chair of 3GPP SA puneet.jain@intel.com www.3gpp.org