

ETSI Conference on Non-Terrestrial Networks, A Native Component of 6G

ETHER: A 6G Architectural Framework for 3D Multi-Layered Networks

Chih-Kuang Lin Collins Aerospace - ETHER

04/04/2024

Outline

ETSI Conference on Non-Terrestrial Networks, A Native Component of 6G The Standards People

□ ETHER Overview

- Technical Information
- **Reference Architecture**
- Use Cases
- Planned Standardization Activities

ETHER Overview

- Project Name: ETHER sElf-evolving terrestrial/non-Terrestrial Hybrid nEtwoRks
- **Project website:** ether-project.eu
- Stream: SNS-2022-STREAM-B-01-03: Communication Infrastructure Technologies and Devices
- Goal: ETHER is going to provide a framework for the terrestrial/non-terrestrial network ecosystem that involves an efficient and zero-touch resource management, provides solution for key radio access network (RAN) challenges, and identifies the business opportunities for potential stakeholders

Number	Role	Short name	Legal name	Country
1	C00	uni.lu	UNIVERSITE DU LUXEMBOURG	LU
2	BEN	AUTH	ARISTOTELIO PANEPISTIMIO THESSALONIKIS	EL
3	BEN	CA	COLLINS AEROSPACE IRELAND, LIMITED	IE
4	BEN	AVA	AVANTI HYLAS 2 CYPRUS LIMITED	CY
5	BEN	SIOT	SATELIO IOT SERVICES, SL	ES
6	BEN	Ubiwhere	UBIWHERE LDA	PT
7	BEN	I2CAT	FUNDACIO PRIVADA I2CAT, INTERNET I INNOVACIO DIGITAL A CATALUNYA	ES
8	BEN	NBC	NEARBY COMPUTING SL	ES
9	BEN	NCSR "D"	NATIONAL CENTER FOR SCIENTIFIC RESEARCH "DEMOKRITOS"	EL
10	BEN	LIU	LINKOPINGS UNIVERSITET	SE
11	BEN	OPL	ORANGE POLSKA SPOLKA AKCYJNA	PL
12	AP	MARTEL GMBH	MARTEL GMBH	СН
13	AP	Net AI	NET AI TECH LTD	UK

Technical Information

Objectives

4

0-1	Provide solutions for a unified and sustainable RAN for the integrated terrestrial and non- terrestrial network
0-2	Provide an AI-based framework for the self- evolving network slicing management and orchestration of the integrated network
0-3	Architect a viable, highly energy- and cost- efficient, flexible integrated terrestrial and non- terrestrial 6G network offering seamless and continuous connectivity
0-4	Demonstrate the effectiveness of ETHER solutions by experimentation activities that target practical applications
0-5	Identify the key benefits that will drive the investment in the integration of non-terrestrial with terrestrial networks

ETHER 3D Network AI-enabled E2E network Inter-satellite performance GEO link optimization Flexible MEO payload ETHER MANO Satellite gNB DU controlle LEO MEC & E2E Network & Service Management Seamless caching Space Horizontal Aerial --> Control link DU 🔹 Handover controller DU Aerial gNB Regenerative đ payload Terrestria HAPS= controller Transparent 3 Semantics-aware NFV MANO payload Direct data analytics Access link handheld Ground (NR-Uu) access Backhaul link B Unified RA (N1/2/3) RĘ CU Waveform Π SC gNB Fronthaul link (F1) Seamless Vertical, ■ Xn interface NWDAF NSSF NEF NRF PCF UDM AUSF Handover N6Data AI-based predictive Core AMF SMF•-Network •UPF analytics

Technical Innovations

	T-1	Integrated Architecture	T-2	Direct handheld device access at the Ka band from LEO satellites	Т-3	Unified waveform design	Т-4	Flexible payloads
I	T-5	Data analytics, edge computing, and caching	T-6	Horizontal/vertical handovers	T-7	Automated MANO for the integrated network	T-8	Al-driven E2E network performance optimization

ETHER High-Level Reference Architecture

E2E Service Layer

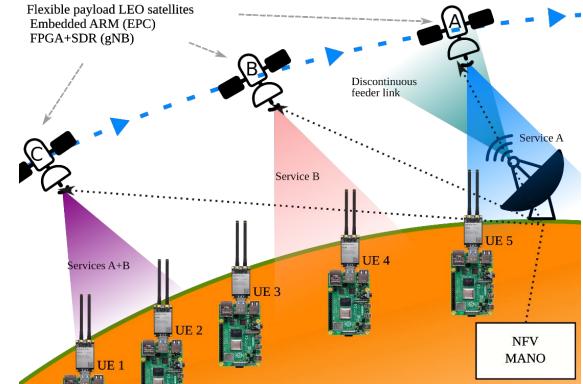
The ETHER high-level reference architecture comprises:

- Infrastructure layer: Includes the TN and NTN physical and virtualized assets
- Network layer: Composed of network functions, such as 3GPP CN, RAN, and transport related functions
- □ Service Layer: Consisting of the Network Slice Instances (NSIs)
- Application Layer: Contains applications exploiting the capabilities offered by the NSIs
- Business layer: Consists of the relevant business actors, such as MNOs, SNOs, and vertical industries

Business Layer							
Application Layer							
Network Slice #1 Network Slice #2 Network Slice #n Service Layer Network Functions (C Network Layer	Core, RAN, Transport)	Third Party Fu	inctions	Cal	E2E Cross-domain	
					pab	š-do	
	Virtualise	ed Infrastructure			ility	mai	A
Satellite Assets Co	re/Central Cloud	Transport	Edge	Extreme Edge	Capability Exposure	n ETHER	
Aerial Assets Co	re/Central Cloud	Transport	Edge	Extreme Edge	ure	ER MANO	
Terrestrial Assets Co	re/Central Cloud	Transport	Edge	Extreme Edge		õ	
External Infr Infrastructure Layer	astructure (Public/Pri	vate Networks, Clo	ud-Edge Cont	inuum)			

The E2E cross-domain ETHER MANO coordinates these layers on multiple levels

ETHER Use Cases (1/3)


Use Case 1: Service provision to delay-tolerant IoT applications through LEO-satellite horizontal handovers

Assumptions:

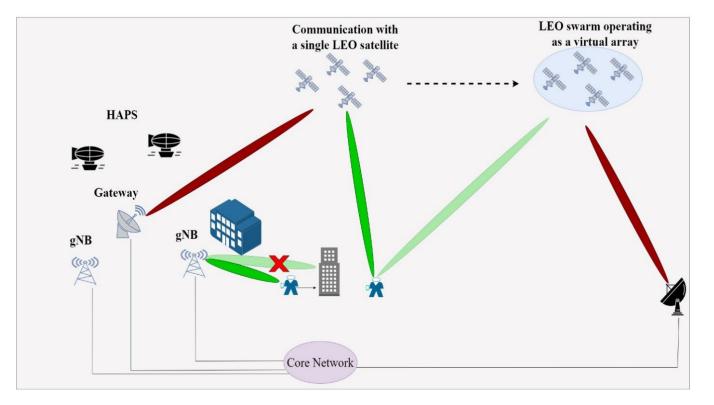
- **G** Feeder-link discontinuity
- Satellites with store-and-forward capability
- Delay-tolerant IoT applications

Key ETHER Innovations:

- Horizontal handovers
- ETHER MANO
- Flexible payloads
- Semantics-aware information handling for high energy efficiency

Demo KPIs:

> 75 % higher energy efficiency leveraging the semantics-aware information handling combined with edge computing and caching



ETHER Use Cases (2/3)

Use Case 2: Broadband direct handheld device access at the Ka band

Assumptions:

- Communication with a terrestrial small cell infeasible either due to lack of infrastructure (remote/rural areas) or bad link/high cell traffic
- Broadband communication required for the handheld device
- **Key ETHER Innovations:**
- Vertical handovers across RATs
- Unified waveform design
- Terminal antenna design
- Distributed beamforming from LEO-satellite swarms

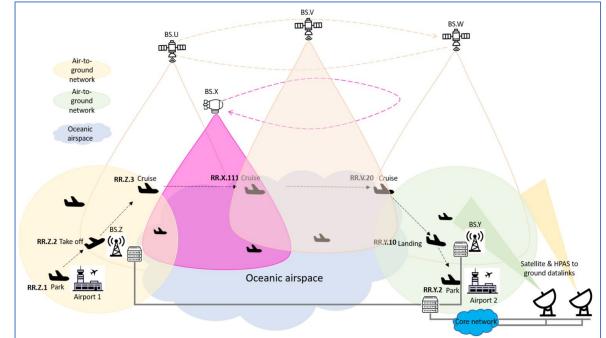
Demo KPIs:

□ 100% coverage

□ >70% more energy-efficient vertical handover w.r.t SOTA

ETHER Use Cases (3/3)

Use Case 3: Air-space safety critical operations


Assumptions:

8

- □ Aircraft moving from one airport to another
- Coverage of the flight through terrestrial stations is imposible. Hence, cannot provide
 E2E aircraft communication services through terrestrial stations

Key ETHER Innovations:

- Vertical handovers across RATs
- ETHER MEC orchestrator
- Unified waveform design
- Predictive analytics
- E2E network performance optimization algorithms

Demo KPIs:

- □ 100% coverage
- □ Performance integrity 10⁻⁴ to 10⁻⁶
- □ >80% more energy efficient resource allocation w.r.t. SOTA

Planned Standardization Activities (1/2)

- Standardization plans / objectives: Active participation from an early stage and contributions to relevant SDOs, based on the scope of the project, will be pursued by the project's partners. Two-fold objective:
 - Ensuring that ETHER work is well aligned with the on-going work at SDOs
 - Promoting ETHER approaches and innovations into the evolution roadmap of the relevant standards

Project activities / technologies that may lead to standardization:

		Individual components of the ETSI OSM will be updated to account for both the aerial and space layers	STORAD RECOURCE	Expansion of these algorithms to also account for both aerial and space layers	Al-Based ETHER Monitoring Framework for Integrated Multi- RAT Traffic	NetAI's Microscope traffic monitor will be extended to account for heterogeneous terrestrial, aerial, and space traffic apart from terrestrial	ETHER Core Network	The proof-of-concept core network with store-and-forward capability for discontinuous link operation will be expanded to account for the satellite dynamics, relative mobility and UEs location management
/ // · · ·	ETHER MEC Orchestrator	Nearby's MEC Orchestrator will be extended to allow integration with NTNs and zero-touch automation	ETHER Flexible Payload System	Integrating the flexible payload system in an SDR board, also incorporating the ETHER MANO	ETHER UE Antenna for Direct Handheld Device Access at the Ka Band	Design of a handheld device antenna for broadband communication across the 3 layers		

Planned Standardization Activities (2/2)

10

• Potential targeted standardization bodies / groups:

3GPP SA1 (focus on use cases and service requirements)	SIOT, UBW	3GPP SA2 (focus on system functional architecture)	SIOT, AVA, UBW	3GPP SA5 (focus on management, orchestration, and charging)	UBW	3GPP RAN WGs (focus on radio access protocols and radio access network architecture)	SIOT, UBW	ETSI SES/SCN	ava, ul	ETSI ZSM	NBC, I2CAT, UL
ETSI MEC	NBC, UL	ETSI ENI	NBC, UL	IEEE P1918.1	LIU	NetworldEurope SatCom Working Group	AVA	Eurocontrol EASA, EUROCAE, RTCA	CA	O-RAN WG1- WG10	NBC, NETAI
ITU-T SG13	OPL	5G-PPP	UBW, SIOT, AUTH	AIOTI Standardization WG	UBW, UL	6G-IA	UBW, AUTH, UL, MAR, NBC, SIOT, CA, I2CAT, NCSRD, OPL				

Drawing upon as inputs: ETSI OSM, ETSI TeraFlowSDN, O-RAN

Standardization planning and estimated time plan: 3-5 years after the ETHER starting date

Interdisciplinary Centre for Security, Reliability and Trust

Non-Terrestrial Networks, a Native Component of 6G

• ETSI Sophia Antipolis 3-4 April 2024

ETSI

The Standards People

Contact:

Jorge.Querol@uni.lu

Konstantinos.Ntontin@uni.lu

Symeon.Chatzinotas@uni.lu

Connect with us

SnT, Interdisciplinary Centre for Security, Reliability and Trust