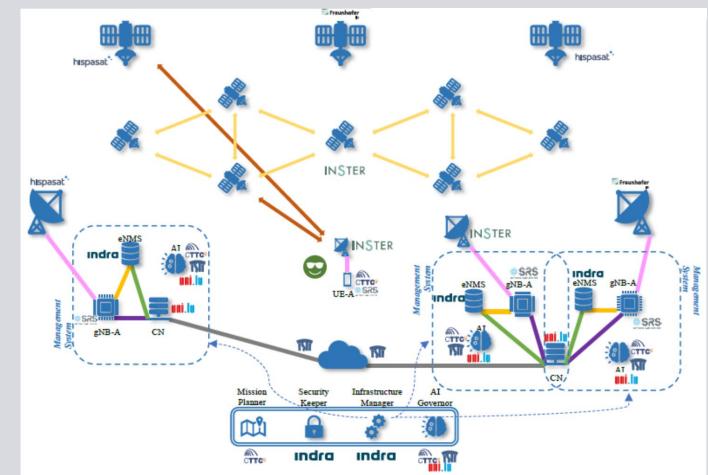


ETSI Conference on Non-Terrestrial Networks, A Native Component of 6G

TRANTOR: paving the path to 6G NTN through multi-connectivity

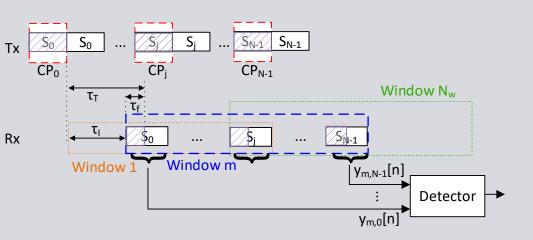
Xavier Artiga

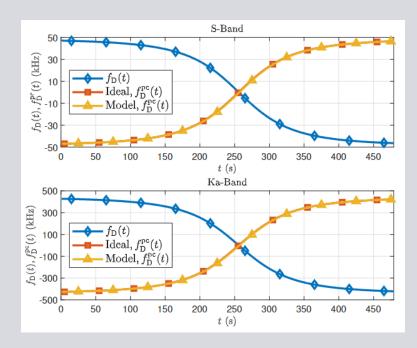
04/04/2024


5G + EVOLU<u>T</u>ION TO MUTIO<u>R</u>BITAL MULTIB<u>AN</u>D NE<u>TWORKS</u>

- ► 6G basic pillars:
 - User-centric communication systems
 - overcrowded NTN layered network
 - Automated and data driven network management system
- ► Current state:
 - Satellite systems are monolithically and independently operated
 - Users assigned to a single satellite resource
- TRANTOR will develop and demonstrate the enablers for a dynamic and automated operation of multi-link satellite networks
 - ► Multi-band
 - ▶ Multi-satellite
 - ► Multi-orbit

WORK FLOW & RELATION WITH STANDARDIZATION

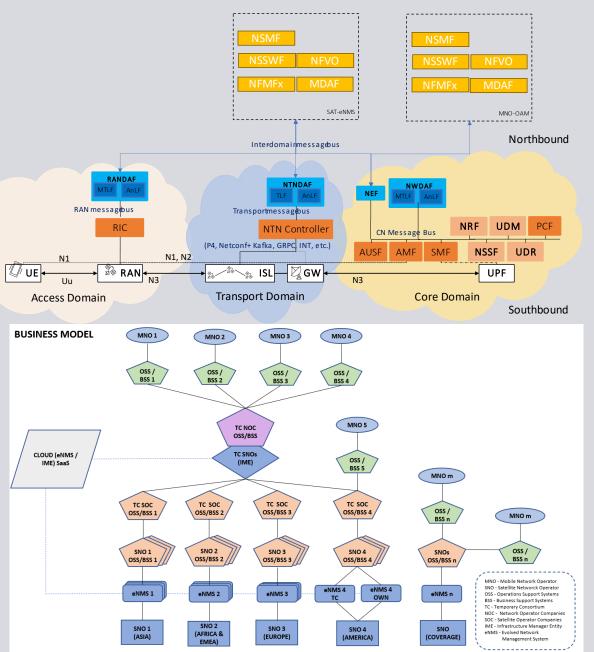

- Release 17 as starting point:
 - Development of compliant SDR gNB and UE
 - Experimental demonstration through real GEO (Jun24) and a drone emulated LEO (DEC24)
- RAN improvements for initial access in FR2 (RAN1)
- Evaluation of CU-DU splitting options (RAN3)
 - Experimental demonstration of low PHY (7-2) split with real GEO satellite (DEC24)
- Evaluation of L1-2-3 multi-connectivity options (RAN2)


- Architectures for integrated & automated management (SA2, IETF)
 - > Telemetry, QoS and multipath management
- > Al/ Non Al-based resource management
- PHY- Network security aspects
- Mission Planner: software tool to design & evaluate complex multi-orbit scenarios
- Multi-connectivity experimental demonstrations (DEC25)
 - Single GEO multi-band (Ka/Ku)
 - Dual-connectivity with 2 GEOs
 - Dual connectivity with 1 GEO and a drone –emulated LEO
 - Dual-band multiorbit UE antenna

RAN IMPROVEMENTS FOR INITIAL ACCESS

- Novel PRACH signal design to increase the robustness to time and carrier frequency offsets in FR2.
 - Advantages: Guarantee the initial access of LEO satellite systems in presence of UE positioning errors.
 - **Trade-offs**: Increased complexity of the preamble detection scheme.
 - **System Impact**: gNB, UE, PHY layer, PRACH signal design and detection.
- Per beam adaptive frequency pre-compensation onboard LEO satellites
 - Advantages: Reduces the carrier frequency offset search space due to the satellite-induced Doppler effect.
 - > Trade-offs: Increased control logic onboard the satellite.
 - **System Impact**: gNB, PHY layer, SSB generation.
- Downlink synchronization rasters for Ku and Ka band
- Doppler post-compensation at UE

- Evaluation of MC scenarios and architectures:
 - ► Layer 1: mTRP
 - Layer 2: Dual connectivity (DC) & carrier aggregation (CA)
 - Layer 3: Network (MA-PDU)
- Current standardization supports NTN as far as MRTD is manageable
- MC Open Issues for NTN
 - Packet re-ordering, interface management, etc.
- Updated HO and SN procedures during NTN NR-DC connectivity
 - Advantages: Uninterrupted data plane connection, minimized data forwarding and buffering in the space segment
 - > Trade-offs: Increased backhaul signaling.
 - **System Impact**: HO and SN procedures.


SN.	MC Scenario	Use Case	KPI		
А	Multi-band, Single-GEO	Wide-area public safety	High reliability		
В	Multi-band, Single-LEO	Hybrid TN-NTN for remote healthcare and telemedicine	Low latency and high reliability		
С	Single-band, Multi-GEO	Remote environmental monitoring and disaster management	Ubiquitous coverage		
D	Single-band, Multi-LEO	Disaster response and emergency communication	Low latency and wide coverage area.		
Е	Multi-band, Multi-GEO	NTN-TN Service continuity for mobile UE	High data rate & seamless handover		
F	Multi-Band, Multi-LEO	Hybrid TN-NTN for rural connectivity	High reliability and wide coverage		
G	Single-band, Multi-Orbital (LEO+GEO)	Maritime connectivity	High data rate and ubiquitous coverage		
Н	Multi-band, Multi-Orbital	NTN-TN service continuity for mobile UE	High data rate and seamless handover		
	(LEO+GEO)	Aerospace and aviation communication	High data rate, Low-latency, and ubiquitous coverage		

			MC Scenario								
2-	MC Technique	Architecture	А	В	С	D	E	F	G	Н	
•	CN	MA-PDU	Any fun. split	Any fun. split	Any fun. split	Any fun. split	Any fun. split	Any fun. split	Any fun. split	Any fun. split	
	DC	1	Any fun. split	Any fun. split	Any fun. split	Any fun. split	Any fun. split	Any fun. split	SC4	Any fun. split	
n, :e	DC	2	Any fun. split	Any fun. split	Any fun. split	Any fun. split	Any fun. split	Any fun. split	Any fun. split	Any fun. split	
	DC	3	Any fun. split	Any fun. split	Any fun. split	SC2	Any fun. split	Any fun. split	Any fun. split	Any fun. split	
	CA		SC1	Any fun. split	Fun. split 5-8	Fun. split 5-8	Fun. split 5-8	Fun. split 5-8	Exces. MRTD	Exces. MRTD	
	mTRP	NC-JT	Any fun. split	Any fun. split	5 5773	Fun. split 7.2x, 7.1, 8	Fun. split 7.2x, 7.1, 8	Fun. split 7.2x, 7.1, 8	Exces. MRTD	Exces. MRTD	
	mTRP	C-JT	Not with MB	Not with MB	Exces. MRTD	Exces. MRTD	Not with MB	Not with MB	Exces. MRTD	Not with MB	

ARCHITECTURES FOR INTEGRATED & AUTOMATED MANAGEMENT

- eNMS: evolution of satellite NMS to cloud based orchestrator
- IME (Integrated Management Entity): overarching element above multiple evolved eNMS
- Distributed analytics extraction to support QoS and Traffic Monitoring in Mid/Back-haul
 - In-band Network Telemetry (INT)

- Limited consortium resources: Leverage on current involvement of TRANTOR participants in standardization groups/activities
 - Hispasat: GSOA, 3GPP (RAN1-4)
 - ► FHG IIS: 3GPP (RAN1-4), SSIG
- Identification of technological outcomes
- Advertisement to relevant standardization groups/activities

WHERE TO FIND US

Xavier Artiga (CTTC)

xavier.artiga@cttc.es

Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA)

💡 Castelldefels (Barcelona), Spain

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No 101081983.