

Scalable Cloud-Native
Operation of Multi-Cloud
Deployments

Francisco-Javier Ramón (Telefónica, ETSI OSM Chair)

13/11/2024

OSM provides a platform to create Network Services dynamically and to manage them conveniently later

OSM manages the low-level setup for **Network Functions** and **Cloud Infrastructure**, so that they are ready for use.

- It covers in 100% the role of a kind of **specialized PaaS for Network Functions**, with 2 key features:
 - 1. Complex connectivity setup, including EPA and underlay network scenarios.
 - 2. Solve inter-NF relations.
 - 3. Create any cloud infra required for the Network Service.
- Returns: Service ready for its use and properly connected:
 - Exposes the "service" and its lifecycle, not its components.
 - Presented as a whole (i.e., abstracts from low-level details).
 - Easy (standardized) access to NS's lifecycle.
- This follows well-known paradigms in IT and public clouds.

Release SIXTEEN brings a revolution in OSM's internal architecture, unlocking a huge set of features

Release SIXTEEN

Cloud-native operations in OSM

- Management cluster for cloud-native management of infra and applications.
- Workflow for cloud-native operations in OSM following GitOps model.

Setup of Git repo during OSM installation for continuous deployment operation.

Management of Kubernetes clusters

- Full life-cycle cluster management from OSM.
- Management of PaaS clusters from public clouds
- Infrastructure profiles for K8s clusters.
- Update profiles in a cluster.
- App profiles for K8s clusters.
- Kubernetes SW units deployable over K8s clusters.

Security enhancements

- Modification of audit logs in NBI for password change and NS operations.
- Password recovery in OSM.

Enhanced operational capabilities

Available at: osm.etsi.org Add option for CNF upgrade to reset values

- NS config templates as first-class citizens in OSM.
- NBI support for deletion of multiple NS Instances from OSM UI.

for upgrade operation on helm charts.

- Add labels to Kubernetes objects created by OSM.
- Enhancement of vertical scale feature and merge in update API.
- Service KPI Metric Based Scaling of VNF using exporter

OSM installation

- Installation of ingress controller in OSM community installer.
- Enable K3S as Kubernetes distro for OSM installation.
- Publication of OSM helm chart externally in Gitlab.
- Use of upstream helm charts for Prometheus and Grafana in OSM installation.
- Removal of Zookeeper from OSM installation.
- Integration of OSM Helm Chart with different databases.

With Release SIXTEEN, OSM has extended substantially its scope and architecture

With Release SIXTEEN, OSM has extended substantially its scope and architecture

Classical OSM NFV-like operations Day-1/2 actions

Configuration as Data
Kubernetes-like operations
Continuous Sync & Reconciliation

What are declarative operations about?

What are declarative operations about?

When applicable, OSM's declarative operation solves elegantly some practical challenges

OSM's IMPERATIVE OPERATION

- "Desired state" based on a sequence of actions
 - New deployment = Re-doing steps
 - Case-specific rollbacks (how to "undo" an action?)
 - **Debugging** requires figuring out state first.
- Onboarding often requires
 - Deep app-specific knowledge
 - NFV-like adaptations

OSM's DECLARATIVE OPERATION

- "Desired state" unambiguously captured
 - New deployment = Copy state
 - Trivial rollbacks (use history of states)
 - Debugging starts by checking state.

- Simple onboarding of cloud-native components
 - Reusability of many pre-existing artifacts.
 - Shallower learning curve.

- OSM code can leverage on both Python libraries and K8s operators
 - High-level support for a huge variety of cloud resources

ETSI ETSI

The New OSM behind the hood

OSM's declarative operations behind the hood

11

- Syncs are delegated to Management Cluster and Workload Clusters.
 - Flux: Sync with Sources of Truth (Git, OCI repos, object storage, etc.).
 - Crossplane, CAPI: Sync with target clouds (Management Cluster only).

Why naïve GitOps is not enough?

Need of granting synchronization order

• E.g., A new K8s cluster needs to be ready before attempting to deploy an App.

Massive duplication of intents for large deployments

Maintenance of duplicated intents may be a recipe for disaster.

Grant protection of sensitive data, so that it is never saved in clear (e.g., secrets)

Creation of resources in the clouds

Bootstrap of remote clusters, which, in turn, become "resource containers"

• One cluster (*Management*) may create others (*Workload*), which, in turn, may host Apps/CNFs.

Under these premises, complexity grows wildly with size!

New OSM's concepts: **KSU** as minimal unit of state to sync

- KSU = Kubernetes Software Unit
 - Set of manifests.
 - May be based or include references to an OSM blueprint (OKA).

SOURCE(S)
OF TRUTH

CLOUDS AND SITES

New OSM's concepts:

Profile collects KSUs to be sync'd together

- Profile = Collection of KSU to be sync'd together
- Ready to attach to a layer of synchronization of clusters

SOURCE(S)
OF TRUTH

CLOUDS AND SITES

New OSM's concepts:

Cluster Intent refers to Profiles to apply to a given cluster

OF TRUTH

- Each cluster has 4 layers of synchronization
- Profiles are attached to layers of synchronization
 - A profile can be attached to more than 1 cluster

CLOUDS AND SITES

New OSM's concepts:

Cluster Intent refers to Profiles to apply to a given cluster

Infrastructure add-ons that need to be present in the cluster so that it has the right functionality.

• **Examples:** Multus Controller, Cert-manager, Service Mesh, K-Native, Ingress Controller, Flux Controller, Crossplane Controller, etc.

Add-on configurations, **service account setups**, or any other tunning required for the cluster services to be ready.

 <u>Examples</u>: Multus configuration, setup of cert authority, Service Mesh config, Crossplane ad-hoc Compositions, etc.

Regular K8s Apps and/or CNFs.

Main case for regular Workload Clusters.

Examples: 5GCore, IMS, MySQL, GitLab, etc.

K8s objects representing cloud resources (quite often, PaaS/SaaS).

Main case for the **Management Cluster(s)**.

Examples: K8s clusters, OCI registry, cloud databases, S3 storage, etc.

Demo: Full 5G Use case

Play online demo:

https://www.etsi.org/events/webinars?commid=624338

Takeaways

OSM Rel SIXTEEN marks a pivotal milestone in OSM's journey, introducing significant changes in its scope, architecture, and functionality

• The new scope involves the management of **infrastructure**, **platforms** and **applications** across cloud platforms.

Naïve GitOps-like operations can become highly complex for large multi-cloud deployments

- Synchronization order, reuse of intents or protection of sensitive data (among others) are not trivial to operate at scale.
- Orchestration can become of great help here to prevent a exploding complexity.

The new OSM engine for **declarative operations** (which coexists with the **NFV-like** one), is key to manage large cloud-native infrastructures successfully

OSM defines new concepts, such as **KSUs**, **OKAs**, **Profiles** and **Cluster Intents** to orchestrate large declarative deployments in a more convenient fashion

• OSM leverages on well-stablished SW components whenever feasible to facilitate CNF/Apps onboarding and avoid reinventing the wheel, focusing on its core purpose.

Thank You!

osm.etsi.org
osm.etsi.org/docs/user-guide
osm.etsi.org/wikipub

Components in an OSM installation in Release SIXTEEN

Different deployment options

Different deployment options

Different deployment options

Installation in three clusters

Workflows for cloud-native operations in OSM follow GitOps model

Architecture in Release SIXTEEN

Workflow for cloud-native operations in OSM following GitOps model

Architecture in Release SIXTEEN

Generic workflow for all operations

