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Foreword

This Technical Specification (TS) has been produced by ETSI Technical Committee Electronic Signatures and Infrastructures (ESI).

Introduction

The present document provides for security and interoperability for the application of the underlying mathematical algorithms and related parameters for electronic signatures in accordance with the Directive 1999/93/EC of the European Parliament and of the Council of 13 December 1999 on a Community framework for electronic signatures [1].

The present part of this technical standard defines a list of cryptographic algorithms together with the requirements on their parameters, as well as the recommended combinations of algorithms in the form of "signature suites" to be used with the data structures defined in the documents developed under the EESSI (European Electronic Signature Standardization Initiative). The present document contains several informative annexes which provide useful information on a number of subjects mentioned in the text.

The present document is not a general purpose document dealing with hash functions and asymmetrical algorithms in general. The goal of the present document is not to list all “good” signature algorithms but those that are most important to be used in the context of advanced electronic signatures. In addition, the intent of the present document is not to have a catalog of all algorithms suitable for advanced electronic signatures, but to limit the list to a reasonable set so that interoperability can be achieved. Interoperability with security is the main issue.

The primary criteria for inclusion of an algorithm in the document is “Secure, widely used and deployed in practice”. Whereas all listed algorithms have been checked for security by cryptographic experts, it cannot be concluded from the document, that an algorithm not listed would be insecure. 

The second part of this technical standard (protocols and algorithms for SCDev secure channels) defines a list of symmetric algorithms to be used with protocols to construct a secure channel between an application and a signature creation device (SCDev) providing either only integrity or both integrity and confidentiality. Such a secure channel may be used during the operational phase of a signature creation device to remotely download a private key in the signature creation device, remotely extract a public key from the signature creation device when the key pair has been generated by the signature creation device or/and remotely download a public key certificate and associate it with a private key already stored in the signature creation device

1
Scope

This document is targeted to support advanced electronic signatures and the related infrastructure. 

The present document defines a list of cryptographic algorithms combined with the requirements on their parameters, as well as the recommended combinations of algorithms in the form of "signature suites".

This does not mean that other algorithms, key sizes or signature suites cannot be used, but their security should not be considered as being granted. The primary criteria for inclusion of an algorithm in this document are :

· the algorithm is considered as secure,

· the algorithm is commonly used, and 

· the algorithm can easily be referenced (for example by means of an OID). 

The document also provides guidance on the cryptographic algorithms to be used with the data structures used in the context of electronic signatures. For each data structure, the set of algorithms to be used are specified. Each set is identified by an identifier which is either an OID (Object IDentifier) or a URI /URN. The use of such identifiers is necessary so that interoperability can be achieved. In order to allow for data interchange, the document references algorithms in terms of OIDs and URIs / URNs together with algorithm parameters.

Standards like RFCs use terms like SHALL, SHOULD, MAY, RECOMMENDED in order to allow for interoperability. The same terminology is used in this document (see RFC 2119).

Different requirements may apply to the issuers and to the users of the data structures. 

Issuers of the data structures (e.g. CSPs, CRL Issuers, OCSP responders, TSUs) need to know the algorithms and key sizes they SHOULD or MAY support. There SHOULD be at least one algorithm recommended to support, but may be more than one. 

Users of the data structures (i.e. signers or verifiers of electronic signatures) need to know the algorithms and key sizes they SHALL, SHOULD or MAY support. For users and for each data structure, there must be at least one algorithm to support, but may be more than one.

The present document also describes the way the document will be maintained and updated in order to cope with cryptographic improvements (see section 4 and annex A). It describes a process for updating the recommended algorithms lists and parameters. 

Annex B provides historical information on the recommended hash functions, algorithms and key sizes for the generation and verification of electronic signatures. This annex will be periodically revised. 

Annex C gives more information on the generation of RSA keys for signatures and annex D addresses the generation of random data.

The present document defines a set of algorithms and the corresponding parameters that are recommended to be used. If such algorithms are used according to the context where they are expected to be used, then a reasonable security level can be assumed.

The algorithms defined in the present document are usable in particular with the following documents:

 TS 101 733 : Electronic Signature Formats, 

 TS 101 903 : XML Advanced Electronic Signatures (XAdES), 

 TS 101 861 : Time stamping profile,

 TS 101 456 : Policy requirements for certification authorities issuing qualified certificates,

 TS 102 042 : Policy requirements for certification authorities issuing certificates,

 CWA 14 169 : Secure Signature-Creation Devices,

 CWA 14 170 : Security Requirements for Signature Creation Systems,

 CWA 14 171 : Procedures for Electronic Signature Verification,

 CWA 14 167-1 : Security Requirements for Trustworthy Systems Managing Certificates for Electronic Signatures,

 CWA 14 167-2 : Cryptographic module for CSP signing operations with back-up,

 CWA 14 167-3 : Cryptographic module for CSP key generation services,

 CWA 14 167-4 : Cryptographic module for CSP signing operations,

 RFC 3280 : "Internet X.509 Public Key Infrastructure Certificate and CRL Profile",

 RFC 3281 : “An Internet Attribute Certificate profile for authorization”,
 RFC 3161 : (2001): "Internet X.509 Public Key Infrastructure Time-Stamp Protocol (TSP)",

 RFC 2560 : “X.509 Internet Public Key Infrastructure Online Certificate Status Protocol – OCSP”,
Patent related issues are out of the scope of the present document.
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3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the following terms and definitions apply:bit length: The bit length of an integer p is r if  2r-1
[image: image1.wmf]£

 p<2r.

signature suite: combination of a signature algorithm with its parameters, a key generation algorithm, a padding method, and a cryptographic hash function

NOTE:
Currently recommended signature suites are specified in the present document.

3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

AA
Attribute Authority

CRL 
Certification-Service-Provider

CRT
Chinese Remainder Theorem 

CSP
Certification-Service-Provider 

CWA
CEN Workshop Agreement

DSA
Digital Signature Algorithm

ECDSA
Elliptic Curve Digital Signature Algorithm

ECGDSA
Elliptic Curve German Digital Signature Algorithm

OID
Object Identifier

PRNG
Pseudo Random Number Generator

RSA
Rivest, Shamir and Adleman algorithm

SAGE
Security Algorithms Group of Experts

SSCD
Secure-Signature-Creation Device

TST
Time-Stamp Token

TSU
Time-Stamping Unit

TRNG
True Random Number Generator

TWS
Trustworthy System

URN
Uniform Resource Number

4.
Maintenance of the document 

As a response to relevant developments in the area of cryptography and technology, activities for the maintenance of this document shall enable dynamic updating of the lists of recommended algorithms and signature suites. An initial list of recommended cryptographic hash functions and signature algorithms is given in the present document.

The maintenance activities will introduce new cryptographic hash functions and signature algorithms and will lead to remove cryptographic hash functions and signature algorithms from the list need to respond to the following situations :

1)
the need to introduce new algorithms and relevant parameters will call for a mechanism that is rather dynamic. Since it is important to maintain interoperability, updates may result from the adoption or removal of an algorithm in a document on which an EESSI is based upon. 

2)
advances in cryptography will call for a phasing out of some algorithms or parameters. Such phasing out will normally be known well in advance.

3)
in the case of new attacks the immediate need to remove an algorithm could arise.

The maintenance activity is carried by ETSI ESI with the cooperation of the SAGE group. 

It is intended that the SAGE group will analyze the document periodically (every two years) and propose changes in accordance with developments in the field of cryptography. In order to allow an easy follow up of this document, an history of the tables provided in the main body of the document will be maintained and kept as annexes. Further information on updating the content of this document is contained in Annex A.

5.
Hash functions

5.1.
General

Hash functions need to be used in a variety of cases, such as:

· Advanced Electronic Signatures include the identifier of the hash function used to compute the digital signature, 

· Time-Stamp tokens require the use of a hash algorithm for the data to be time-stamped,

· Public key certificates require to signed with a signature suite that includes a hash function. 

A one-way hash function takes as input a variable-length message and produces as output a fixed-length hash value. 

For secure electronic signatures, a hash function must have two properties:

 given only a hash value, it is computationally infeasible to find a message with that hash value
(inversibility property),

 it is computationally infeasible to find two messages which produce the same hash value 
(collision resistance).

To ensure the non-forgeability of digital signatures based on the use of a hash function, it is necessary that the two properties are satisfied (i.e. non-inversibility property and collision resistance), while for the non-repudiation of already created digital signatures based on the use of a hash function, it is only necessary to satisfy the first property (i.e. non-inversibility property).

The list of currently recommended hash functions is given in Table 1. Each hash function has a unique entry index represented by a string beginning with "1." followed by a two-digit entry number.

Table 1: The list of recommended hash functions

Hash function entry index
Short hash function entry name
Adoption date
Normative references

1.01
sha1
01.01.2001
[4] and [5]

1.02
ripemd160
01.01.2001
[4]

1.03
sha-224
2004
[28]

1.04
sha-256
2004
[28]

1.05
whirlpool
2004
[29]

Due to the insecurity of MD5 and SHA-0, an additional candidate for a secure hash algorithms beside the SHA-2 family is needed. For that reason the Whirlpool algorithm has been added. This algorithm has been reviewed by NESSIE experts.
5.2.
Recommended one way hash functions

5.2.1
SHA1

SHA-1 may be used to hash a message, M, having a length of up to 2^64 bits. The algorithm uses :

1) a message schedule of eighty 32-bit words, 

2) five working variables of 32 bits each, and 

3) a hash value of five 32-bit words. 

The final result of SHA-1 is a 160-bit message digest.
5.2.2
RIPEMD-160

RIPEMD-160 is a 160-bit cryptographic hash function, designed by Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. It is intended to be used as a secure replacement for the 128-bit hash functions MD4, MD5, and RIPEMD.

5.2.3
SHA-224

SHA-224 may be used to hash a message, M, having a length of up to 2^64 bits. The function is defined in the exact same manner as SHA-256 (Section 6.2), except for two operations in the formation of the initial and final hash values.

5.2.4
SHA-256

SHA-256 may be used to hash a message, M, having a length of up to 2^64 bits. The algorithm uses :

1) a message schedule of sixty- four 32-bit words, 

2) eight working variables of 32 bits each, and 

3) a hash value of eight 32-bit words. 

The final result of SHA-256 is a 256-bit message digest.
5.2.5
WHIRPOOL

WHIRLPOOL is a hash function designed by Vincent Rijmen and Paulo S. L. M. Barreto that operates on messages less than 2 256 bits in length, and produces a message digest of 512 bits. The International Organization for Standardization (ISO) has decided to include WHIRLPOOL in the revised ISO/IEC 10118-3:2003(E) standard.

6.
Signature algorithms

6.1
General

The list of currently recommended signature algorithms is given in Table 2. Each signature algorithm has a unique entry index represented by a string beginning with "2." followed by a two-digit entry number.

Table 2: The list of recommended signature algorithms

Signature algorithm entry index
Short signature algorithm entry name
Key and Parameter generation algorithms
Normative references

2.01
rsa
Rsagen1
[7]

2.02
dsa
Dsagen1
[9]

2.03
ecdsa-Fp
Ecgen1
[9], [11]

2.04
ecdsa-F2m
Ecgen2
[9], [11]

2.05
ecgdsa-Fp
Ecgen1
[13]

2.06
ecgdsa-F2m
ecgen2
[13]

The following clauses describe the parameters and key generation algorithms for the signature algorithms listed in Table 2.

6.2
Recommended signature algorithms

6.2.1
RSA

The RSA algorithm's security is based on the difficulty of factoring large integers. To generate the key pair two prime numbers, p and q, are generated randomly and independently, satisfying the following requirements:

 the bit length of the modulus n = p q must be at least MinModLen; its length is also referred to as ModLen;

 p and q should have roughly the same length, e.g. set a range such as 0,1 < | log2p - log2q | < 30;

 there should be sufficiently many primes to choose from and they should be reasonably uniformly distributed.

The private key consists of a positive integer d (the private exponent) and the modulus n.

The public key consists of a positive integer e (the public exponent) and the modulus n.

CRT (Chinese Remainder Theorem) implementations are also allowed, in which case the private key will contain more values derived from the factorization of the modulus n.

6.2.2
DSA

The DSA algorithm's security is based on the difficulty of computing the discrete logarithm in the multiplicative group of a prime field Fp. The DSA computations shall be performed as described in [9]. The public parameters p, q and g may be common to a group of users. The prime modulus p shall be at least pMinLen bits long. q, which is a prime divisor of (p-1), shall be at least qMinLen bits long. g shall be computed as indicated in [9].

The private key consists of:

 the public parameters p, q and g;

 a statistically unique and unpredictable integer x, 0 < x < q, which is signatory-specific; and

 a statistically unique and unpredictable integer k, 0 < k < q, which must be regenerated for each signature.

If the distribution of k is significantly different from uniform within the interval then there may be weaknesses. Bleichenbacher has presented an attack which can be sub-exhaustive depending on the size of the bias and the number of signatures produced using a single secret key.

The public key consists of p, q, g and an integer y computed as y = gx mod p.

When computing a signature of a message M, no padding of the hashcode is necessary. However, the hashcode must be converted to an integer by applying the method described in appendix 2.2 of [9].

6.2.3
Elliptic curve analogue of DSA based on a group E(Fp)

This signature algorithm is referred to as ecdsa-Fp. The algorithm shall be applied as specified in the normative references n in Table . The same algorithm is also specified in references [10], [7], [13] which can be used for information. The security of the ecdsa-Fp algorithm is based on the difficulty of computing the elliptic curve discrete logarithm.

The public parameters are as follows:

 p prime (different from 1);

 q large prime at least qMinLen bits long, p ( q;

 E elliptic curve over a finite field Fp whose order is divisible by q; and

 P point on E(Fp) of order q.

The class number of the maximal order of the endomorphism ring of E shall be at least MinClass. 

The value r0: = min (r: q divides pr-1) shall be greater than r0Min.

In FIPS 186-2 [9] five curves over a prime field are defined. All these curves fulfill the above requirements.

The private key consists of:

 the public parameters E, m, q and P;

 a statistically unique and unpredictable integer x, 0 < x < q, which is signatory-specific; and

 a statistically unique and unpredictable integer k, 0 < k < q, which must be regenerated for each signature.

The public key consists of E, q, P and Q, a point of E, which is computed as Q = xP.

6.2.4
Elliptic curve analogue of DSA based on a group E(F2m)

This signature algorithm is referred to as ecdsa-F2m. The algorithm shall be applied as specified in the normative reference [11]. The same algorithm is also specified in references [10], [7], [13] which can be used for information. The security of the ecdsa-F2m algorithm is based on the difficulty of computing the elliptic curve discrete logarithm.

The public parameters are as follows:

 m prime number;

 q large prime at least qMinLen bits long,

 E elliptic curve over a finite field F2m whose order is divisible by q;

 it must not be possible to define E over F2, and

 P point on E(F2m) of order q.

The class number of the maximal order of the endomorphism ring of E shall be at least MinClass. The value r0:=min(r: q divides 2mr-1) shall be greater than r0Min.

In FIPS 186-2 [9] five pseudorandomly generated curves over F2m are defined. All these curves satisfy the above requirements. Note that the Koblitz curves given in [9] are defined over F2 and hence do not fulfill the fourth requirement.

A field representation is required, common to both the signatory and the verifier, so that signatures can be interpreted correctly. The representations given in [9] and [10] are recommended. Thus if a polynomial basis is required then an irreducible trinomial of the form xm + xa + 1 with minimal a should be used. If such a polynomial does not exist then an irreducible pentanomial of the form xm + xa + xb + xc + 1 should be used; a should be minimal, b should be minimal given a and c should be minimal given a and b.

The private key consists of:

 the public parameters E, m, q and m;

 a statistically unique and unpredictable integer x, 0 < x < q, which is signatory-specific; and

 a statistically unique and unpredictable integer k, 0 < k < q, which must be regenerated for each signature.

The public key consists of E, q, m and Q, a point of E which is computed as Q=xP.

6.2.5
EC-GDSA based on a group E(Fp)

This signature algorithm is referred to as ecgdsa-Fp. The algorithm shall be applied as specified in [13]. The security of the ecgdsa-Fp algorithm is based on the difficulty of computing the elliptic curve discrete logarithm.

The ecgdsa-Fp algorithm is a variant of the ecdsa-Fp algorithm with a modified signature creation equation and verification method. The parameters are the same as for ecdsa-Fp and therefore should satisfy all the constraints given in clause 4.5.4.1.

6.2.6
EC-GDSA based on a group E(F2m)

This signature algorithm is referred to as ecgdsa-F2m. The algorithm shall be applied as specified in [13]. The security of the ecgdsa-F2m algorithm is based on the difficulty of computing the elliptic curve discrete logarithm.

The ecgdsa-F2m algorithm is a variant of the ecdsa-F2m algorithm with a modified signature creation equation and verification method. The parameters are the same as for ecdsa-F2m and therefore should satisfy all the constraints given in clause 4.5.5.1.
7.
Signature suites

7.1
General

Due to possible interactions which may influence security of electronic signatures, algorithms and parameters for secure electronic signatures shall be used only in predefined combinations referred to as the signature suites. A signature suite consists of the following components:

 a hash function,

 a padding method, 

 a signature algorithm and its associated parameters,

If any of the components of a suite is modified, then the suite must be modified accordingly. 

The list of recommended hash functions is defined in section 5.2.

The list of recommended padding methods is defined in section 7.2.

The list of recommended signature algorithms is defined in section 6.2.

The list of currently recommended signature suites is given in section 7.3.

Key generation is not part of the way to identify a signature suite and may change over time. Key generation methods are addressed in section 8.

Some key generation methods and some signature suites require to generate a pseudo-random number. The pseudo-random number generation method is not part of the way to identify a signature suite and may change over time. Pseudo-random number methods are addressed in section 9.

7.2
Padding methods

Signature algorithms with appendix require methods that encode a message into an integer message representative that will be the input for the signature primitive. This encoding method can be deterministic, for example a padding of a fixed string to the hash value computed from the message, but may be also randomized, incorporating a (randomly generated) salt value, which are converted to and from message representatives. Despite of these latter encodings are not true padding schemes they are not listed here.

The list of currently recommended padding methods is given in Table 5. Each padding method has a unique entry index represented by a string beginning with "3" followed by a two-digit entry number.

Table 3 The list of recommended padding methods

Padding method entry index
Short padding function entry name
Random number generation method
Random generator parameters
Normative references

3.01
emsa-pkcs1-v1.5
-
-
[6] 

3.02
emsa-pkcs1-v2.1

-
[17], Clause 9.2

3.03
emsa-pss
trueran/pseuran
TBD
[17], Clause 9.1

3.04
iso9796ds2
trueran/pseuran
TBD
[27] 

3.05
iso9796-din-rn
trueran/pseuran
TBD
[30] DIN V66291

3.06
iso9796ds3


[27] 

The emsa-pss method is included as, despite not being widely used, it has been stable for a long time and is a good improvement to the emsa-pkcs1-v2.1 scheme. The emsa-pss method is better suited for long term use than the emsa-pkcs1-v2.1 method as it can be viewed as good improvement to the emsa-pkcs1-v2.1 method.

iso9796ds2 is “digital signature scheme 2” in [27] (ISO/IEC9796-2).

iso9796-din-rn is the variant of a scheme from [27] (ISO/IEC9796-2) called “DSI according to ISO/IEC9796-2 with random numbers” in [30] (DIN V66291).

iso9796ds3 is “digital signature scheme 3” in [27] (ISO/IEC9796-2).

7.3
Recommended signature suites

A signature suite is defined using three parameters:

 a hash function,

 a padding method, 

 a signature algorithm and its associated parameters,

entry name of the signature suite
entry name for the hash function
entry name for the padding method
entry name for the signature algorithm

sha-1-with-rsa
sha1

rsa

sha-1-with-dsa
sha1

dsa

ripemd-with-rsa
ripemd160

rsa

ripemd-with-dsa
ripemd160

dsa

sha224-with-rsa
sha224

rsa

sha256-with-rsa
sha256

rsa

RSASSA-PSS with mgf1SHA1Identifier
mgf1SHA1
rsa

RSASSA-PSS 
with 
mgf1SHA224Identifier
mgf1SHA224
rsa

RSASSA-PSS 
with mgf1SHA256
Identifier
mgf1SHA256
rsa

sha-1-with-ecdsa
sha1

ecdsa-Fp 
or 
ecdsa-F2m

sha-256-with-ecdsa
sha256

ecdsa-Fp 
or 
ecdsa-F2m

sha-1-with-ecgdsa
sha1

ecdsa-Fp 
or 
ecgdsa-F2m

sha-256-with-ecgdsa
sha256

ecdsa-Fp 
or 
ecgdsa-F2m

8.
Recommended key pair generation methods

8.1.
General

Key pair generation methods are not part of the definition of a signature suite and may evolve without the need to change the identifier of the signature suite.

Table summarizes the recommended key pair generation methods for all signature algorithms considered in the present document. Each key pair generation method has a unique entry index represented by a string beginning with "4" followed by a two-digit entry number

Table 4: The list of recommended key pair generation methods

Key generator entry index
Short key generator entry name
Signature algorithm
Random number generation method
Random generator parameters
Adoption date
Normative references

4.01
rsagen1
rsa
trueran or pseuran
EntropyBits (  or SeedEntropy ( 
01.01.2001


4.02
dsagen1
dsa
trueran or pseuran
EntropyBits (  or SeedEntropy ( 
01.01.2001
[18]

4.03
ecgen1
ecdsa-Fp, ecgdsa-Fp
trueran or pseuran
EntropyBits (  or SeedEntropy ( 
01.01.2001


4.04
ecgen2
ecdsa-F2m, ecgdsa-F2m
trueran or pseuran
EntropyBits (  or SeedEntropy ( 
01.01.2001


8.2.
Recommended key pair generation methods

8.2.1.
Key and parameter generation algorithm rsagen1

Generate p and q as indicated in 6.2.1 by applying a random number generation method satisfying the requirements trueran (see clause 9.2.1) or using a method satisfying pseuran (see clause9.2.2 ) with an appropriate size seed. Each prime shall effectively be influenced by EntropyBits bits of true randomness or a seed of entropy SeedEntropy bits. Random numbers shall be tested for primality until one of them is found to be prime with a probability of error (i.e. of actually being composite) of at most 2-80. 

Details on generating random primes can be found in [25] ISO/IEC 18032, in particular section 8.2. Examples of algorithms to produce RSA moduli, i.e. pairs of primes satisfying the condition 0,1 < | log2p - log2q | < 30 are given in Annex C .

The private exponent d and the public exponent e must satisfy ed ( 1 (mod lcm (p-1, q-1)) which is automatically the case if ed ( 1 (mod (p-1)(q-1)). The private exponent d must not be too small (Wiener 1990, Boneh and Durfee 1999, Durfee and Nguyen 1999, see bibliography); it is sufficient to choose d in a range at least 
[image: image2.wmf]n

 from its minimum and maximum values.

In practice by randomly choosing the public exponent e (subject to the condition gcd(e,(p-1)(q-1))=1) the corresponding private exponent d will satisfy that condition with very high probability. If e is chosen small (e.g. less than n0.125) the condition on d will automatically be satisfied 

A new modulus has to be produced for each user of the signature scheme even if different public exponents are used. In practice if the moduli and public exponents are produced as described above (i.e. random modulus and choosing the public exponent) the probability of producing the same modulus or secret exponent is negligible. 

Note: It is not recommended to use a prime selection algorithm that prefers a special class of primes, e.g. strong primes.
8.2.2.
Key and parameter generation algorithm dsagen1

p and q shall be generated as described in appendix 2.2 of [9]. 

Generate x by applying a random number generation method satisfying the requirements trueran (see clause 9.2.1) or using a method satisfying pseuran (see clause9.2.2) with an appropriate size seed. Each value of x shall effectively be influenced by EntropyBits bits of true randomness or a seed of entropy SeedEntropy  bits. Generate k using one of these methods; k does not have to be generated using exactly the same method as x. Possible methods for this can be found in FIPS 186-2 [9] which contains a Change Notice (due to Bleichenbacher's attack).

8.2.3.
Key and parameter generation algorithm ecgen1 for ecdsa-Fp

The prime numbers p and q, and the point P on E(Fp) shall be selected so that the conditions in 6.2.3 are satisfied with primality of an integer regarded as satisfied if the probability that it is composite is at most 2-100. Annex D.1 specifies a possible method to generate p, q, E and P. 

In situations where an intentional choice of weak public parameters (subject to an unknown “insider” attack) seems to be possible a countermeasure is to request that these parameters are generated verifiably at random. In such situations it is recommended to do so at least for the generation of the curve E. In Annex D.1 a possible method for this is described.

Generate x by applying a random number generation method satisfying the requirements trueran (see clause 9.2.1 or using a method satisfying pseuran (see clause 9.2.2 with an appropriate size seed. Each value of x shall effectively be influenced by EntropyBits bits of true randomness or a seed of entropy SeedEntropy bits. Generate k using one of these methods; k does not have to be generated using exactly the same method as x.

8.2.4
Key and parameter generation algorithm ecgen2 for ecdsa-F2m

The prime numbers m and q, the elliptic curve E over F2m   and the point P on E(F2) shall be selected so that the conditions in 6.2.4 are satisfied with primality of an integer regarded as satisfied if the probability that it is composite is at most 2-100. Annex D.2 specifies a possible method to generate m, q, E and P. 

In situations where an intentional choice of weak public parameters (subject to an unknown “insider” attack) seems to be possible a countermeasure is to demand that these parameters are generated verifiably at random. In such situations it is recommended to do so at least for the generation of the curve E. In Annex D.2 a possible method for this is described.

Generate x by applying a random number generation method satisfying the requirements trueran (see clause 9.2.1 or using a method satisfying pseuran (see clause 9.2.2) with an appropriate size seed. Each value of x shall effectively be influenced by EntropyBits bits of true randomness or a seed of entropy   SeedEntropy bits. Generate k using one of these methods; k does not have to be generated using exactly the same method as x.

8.2.5
Key and parameter generation algorithm ecgen1 for ecgdsa-Fp

The parameter and key generation methods should be the same as the ecdsa-F2m methods described in clause 8.2.3.

8.2.6
Key and parameter generation algorithm ecgen2 for ecgdsa-F2m

The parameter and key generation methods should be the same as the ecdsa-F2m methods described in clause 8.2.4.

9.
Random number generation methods

9.1.
General

Some key generation methods and some signature suites require to generate a random number.
9.2.
Recommended random number generation methods

The following table lists the recommended random number generation methods. Each random number generation method has a unique entry index represented by a string beginning with "5" followed by a two-digit entry number.
Table 5: The list of recommended random number generation methods

Random generator entry index
Short random generator entry name
Random generator parameters
Adoption date
Normative references

5.01
trueran
EntropyBits
01.01.2001


5.02
pseuran
SeedEntropy
01.01.2001


For detailed information about random number generation and terminology see [24] ISO/IEC 18031. Some basic information is also given in Annex E.

The random number generation methods combined with the key generation methods have to ensure that the expected effort of guessing a cryptographic key is at least equivalent to guessing a random value that is EntropyBits long. This can be satisfied with respect to different demands like information theoretic vs. just complexity theoretic security, backward secrecy and/or forward secrecy and so on. Sections 9.2.1 and 9.2.2 and Annex E in particular specify by which RNGs  these demands can be satisfied.  

It is strongly recommended to use trueran methods for generating keys that are used more than once. In the case of the one-time keys k for DSA, ECDSA and ECGDSA there is less urgence for that.

9.2.1
Random generator requirements trueran

A random number generator satisfying trueran has to be a pure or hybrid physical NRNG.

Note: Non-physical NRNGs are excluded as the designer has no real control of the amount of the produced entropy. 

Thus a random number generator satisfying trueran is based on a physical primary entropy source and possibly a cryptographic or mathematical post-treatment of the output of the primary entropy source. 

The recommended requirements for these components are:

· (TR1) There is a stochastical model for the primary entropy source which is found consistent with thorough adapted tests of prototypes of the source.

· (TR2) The primary entropy source is subjected to an adapted statistical online test. “Online” means that the test will detect any non-tolerable loss of quality of the primary entropy source during operation sufficiently soon after such an event occurs and that there will then at once be suitable countermeasures (e.g. stop of the generator). “Adapted” means adapted to the statistical model of the primary entropy source. The original output of the primary entropy source should be tested not the output of the post-treatment instead of that (there may be justified exceptions to this general rule). 

See Annex E.2 for some more information about tests for the primary entropy sources. 

The stochastical model and the tests should deliver an estimate for the amount of the produced entropy. The primary entropy source is regarded to be good if it produces nearly one bit entropy per output bit. For a good  primary entropy source no post-treatment is necessary.

· (TR3) If the primary entropy source is not good a post-treatment is employed which by some (necessarily compressing) techniques delivers an output of nearly one bit entropy per output bit. There must be a reasonable stochastical model of the post-treatment as well which together with the stochastical model of the primary entropy source and the tests ensures this property of the output.

Instead of this set of requirements (TR1) – (TR3) the following modified set of requirements is also sufficient although not recommended:

· (TR1’) There are mathematical models for the primary entropy source and the post-treatment that are plausible.

· (TR2’) The primary entropy source is subjected to an online test which will detect most defects of the noise source except for special very unlikely events.

· (TR3’) There is a post-treatment (obligatory in this case) that under the assumption of the models (assuming that the primary entropy source works as expected)  delivers an output of nearly one bit entropy per output bit and that even in the case of a complete breakdown of the primary entropy source (after there has been accumulated enough entropy at the beginning) satisfies the requirements pseuran including condition (PR3) of 6.3.2.

Note: These alternative requirements are closer to the spirit of  ANSI X9.82.  In both cases the major target is to achieve forward and backward secrecy. In the latter case this secrecy can be completely complexity theoretic under certain circumstances and security relies rather on the post-treatment than on the primary entropy source in contrast to the first case which delivers information theoretical forward and backward secrecy. With the second set of requirements in the situation of a readout or manipulation of the internal state also forward secrecy is not ensured.

An example of a possible random number generator design based on a noisy diode is given in Annex E.2 of [24] ISO/IEC 18031 although without the necessary details.
9.2.2
Random generator requirements pseuran

A random number generator satisfying pseuran is a pure or hybrid DRNG satisfying the following conditions:

· (PR1) The DRNG must be initialized by a seed with an entropy of at least SeedEntropy bits. 

· (PR2) Even with the knowledge of a partial output bit sequence of the DRNG and any other information that may leak out and having all information about its initial state except for the seed there is no usable method to determine any other m bits of the output with a probability significantly larger then Max(2-m,2-SeedEntropy).

Note: The second condition in particular implies that there is no information ascertainable a priori as to the output bits and that neither the seed nor any internal state of the DRNG can be recovered from a subset of the output.

The first condition is meant in the sense (or even implies) that the seed is produced using a NRNG. It does not exclude constructions in which the DRNG is seeded by a chain of DRNGs as described in [24] 9.3.2 ISO/IEC 18031. However the first DRNG in this chain must be seeded with the output of a NRNG and in the output of the last DRNG in the chain enough entropy (i.e. at least EntropyBits bits) has to be left over. Moreover of course the whole system (chain + DRNG to be seeded) regarded as a DRNG (including operational freedom like numbers of cycles before the next seeding of links regarded as non-physical additional entropy source) has to satisfy the second condition. The security of a DNRG is only complexity theoretic. With a known seed or a known internal state any future output can be calculated. So the seed has to be kept secret and seeding shall follow procedures similar to those for the generation of root keys.  No backups of the seed or internal states of a pseuran generator are permitted. The internal state of the DNRG must be secured against any readout and any adversarial manipulation. 

In situations in which such readout or manipulation of an internal state of the DRNG does not seem to be completely excluded a re-seeding or a seed-update has to be executed from time to time. If re-seeding is employed the security of the re-seeding process shall be as strong as that of the original seeding. The frequency of this procedure (i.e. the amount of entropy that is fed in per output bit) depends on the actual risk of such readouts or manipulations.

It is recommended to use DRNGs which in addition to the two above mentioned conditions satisfy the following additional condition ensuring backward secrecy even in the case of a known internal state: 

· (PR3) Even with complete knowledge of an internal state there is no usable method to determine any previous m output bits with a probability significiently larger then Max(2-m,2-SeedEntropy).

Note: AIS 20 (see bibliography) defines the classes K3 and K4 for DRNGs. Roughly said K3 DRNGs satisfy conditions (PR1) and (PR2), K4 DRNGs also satisfy (PR3).

Depending on the environment it may further be recommendable to use hybrid DRNGs rather than pure ones. In the case of an hybrid DRNG the following additional condition has to be satisfied: Even with complete knowledge about the output of the additional entropy source or with a certain influence on this output the DRNG has to satisfy at least  conditions (PR1) and (PR2). In other words the output of the additional entropy source is regarded as “information that may leak out” in (PR2). 

The following are examples of pseuran generators:

· ANSI X9.17 generator
(see ANSI X9.17 [16]). This DRNG was designed to pseudorandomly generate keys and initialization vectors for use of DES. It uses the triple-DES algorithm with a fixed key to mix a 64-bit seed with the current date. Iterated encryption enables to generate as many output bits as needed. Condition (PR3) is not satisfied at least without any further assumptions about the clock input. Instead of triple-DES also other strong block ciphers could be used as building block of the generator.

· Example E.4 in AIS 20 is another DNRG based on a variable strong block cipher which as well does not satisfy condition (PR3). 

· RSA DRNG and Blum-Blum-Shub DRNG (see Menezes et al. 1997 in bibliography). Those DRNGs are based on iterated exponentiation modulo a composite modulus. The advantage is to base the security on the intractability of number theoretic problem (respectively RSA and the factorization problem) but the main drawback is the poor efficiency in comparison with the other DRNGs described above, the security of which is only heuristic.

10
Recommended hash functions and key sizes versus time

In this section recommendations are provided regarding the use of hash functions given in chapter 5 and the key sizes to be used with the algorithms appearing in chapter 6.

This chapter is structured as follows:

· in the first two sections, two different ways of looking at key length recommendations, that are called the “liberal view” and the “conservative view”, are introduced, 

· in section 3, hash functions versus time are recommended,

· in section 4, key sizes versus time are recommended. 

Finally explanatory text explaining how these recommendations were reached is provided in Annex G.

10.1
Liberal view

The liberal view of algorithm and hash function strength is characterized by:

· An assumption that there will no unpredicted acceleration in the pace of development of techniques to break the algorithm or hash function.

· An assumption that breaking the algorithm or hash function  will be based on either a current model or extrapolation of such.

· [Editor’s note: more text to be added].
10.2
Conservative view

The conservative view of algorithm and hash function strength is characterized by:

· An attempt to “predict” unforeseen advances in state of the art in analyzing the hash function or algorithm.

· An assumption that new models may be developed to break the hash function or algorithm.

· [Editor’s note: more text to be added].

10.3
Recommended hash functions versus time
The following table provides indication about recommended hash functions during X years. With respect to the above distinction between conservative and liberal views, the conservative view is provided.

[Editor’s note: Why not displaying the liberal view as well, so that the gap can be seen, if any ?]
Definitions:

Usable: The algorithm with the given security parameters can be considered secure at the given time.

Unknown: The security of the algorithm is unknown; use in this case is environment dependent.

Table 6: Recommended hash functions for a resistance during X years 
(conservative view)

entry name of 
the hash function
3 years
5 years
10 years

sha1
Usable
Unknown
Unknown

ripemd160
Usable
Usable
Unknown

sha224
Usable
Usable
Usable

sha256
Usable
Usable
Usable

whirlpool
Usable
Usable
Usable

The following table predicts hash function resistance over 20 years. Due to the inherent unpredictability of such predictions, these predictions are largely speculative.

Additional definition:

Unusable: The algorithm cannot be considered secure for any kind of use in the context of electronic signatures.

Table 7: Predicted hash function resistance over 20 years, 
based on current trends and estimated computational power

entry name of 
the hash function
20 years

sha1
Unusable

ripemd160
Unusable

sha224
Usable

sha256
Usable

whirlpool
Usable

10.4
Recommended key sizes versus time
The following table provides indication about recommended key lengths for a resistance of the algorithm or the signature suite during X years. With respect to the above distinction between conservative and liberal views, the conservative view is provided.

Definition:

Unusable: The algorithm cannot be considered secure for any kind of use in the context of electronic signatures.

Unknown: The security of the algorithm is unknown at this time.

[Editor’s note: Why not displaying the liberal view as well, so that the gap can be seen, if any ?]
Table 8: Recommended key lengths for a resistance during X years 
(conservative view)

entry name of 
the signature suite
3 years 
(2008)
5 years 
(2010)
10 years 
(2015)

sha-1-with-rsa
>640
1024
Unusable

sha224-with-rsa
>640
1024
2048

sha256-with-rsa
>640
1024
2048

RSASSA-PSS with mgf1SHA1Identifier
>640
1024
Unusable

RSASSA-PSS with mgf1SHA224Identifier
>640
1024
2048

RSASSA-PSS with mgf1SHA256Identifier
>640
1024
2048

sha1-with-dsa
>640
1024
2048

sha1-with-ecdsa
163
Unknown
Unknown

sha224-with-ecdsa




sha256-with-ecdsa




The following table predicts the algorithm’s resistance over 20 years. Due to the inherent unpredictability of such predictions, these predictions are largely speculative.

Table 9: Recommended algorithm parameters for the next 20 years, 
based on current trends and estimated computational power

entry name of 
the signature suite
20 years 
(2025)

sha-1-with-rsa
Unusable

sha224-with-rsa
2048

sha256-with-rsa
2048

RSASSA-PSS with mgf1SHA1Identifier
Unusable

RSASSA-PSS with mgf1SHA224Identifier
2048

RSASSA-PSS with mgf1SHA256Identifier
2048

sha1-with-dsa
2048

ecPublicKey
Unknown

sha1-with-ecdsa
Unknown

sha224-with-ecdsa


sha256-with-ecdsa


11. 
Practical ways to identify hash functions and algorithms

In order to be able to use a function or an algorithm with the EESSI documents, it is mandatory to be able to reference it, and when the algorithm has parameters to be able to define these parameters. An “object” needs to be defined to support these parameters. That object MUST be referenced using an OID and/or a URN. Only the owner of the OID or the URN is allowed to define its meaning and thus the meaning of the algorithm, usable pointing to another document. It may be observed that ISO standards are not pointed in RFCs documents. The primary reason is that these documents are sold and the IETF always gives its preference to documents that can be obtained for free.

As a general rule the “OID/URN criterion” may be applied: An algorithm to be included must be defined unambiguously by an OID/URN. If such an OID/URN is not available it may be useful to define it.

11.1
Functions and algorithms identified using OIDs

11.1.1
Hash functions

The hash functions are defined using the following OIDs:

id-sha1
{ iso(1) identifiedOrganization(3) oIW(14) oIWSecSig(3) oIWSecAlgorithm(2) 26 }

ripemd160
{ iso(1) identifiedOrganization(3) teletrust(36) algorithm(3) hashAlgorithm(2) 1 }

id-sha224
{ joint-iso-itu-t(2)country(16) us(840) organization(1) gov(101) csor(3) nistalgorithm(4) hashalgs(2) sha224(4) }

id-sha256
{ joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) csor(3) nistalgorithm(4) hashalgs(2) 1 }

whirlpool
{iso(1) standard(0) encryption-algorithms(10118) part3(3) algorithm(0) whirlpool(55)}

11.1.2.
Signature algorithms

Short object name
OID
Normative references

rsaEncryption
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 1 }
RFC 3279

id-dsa
{ iso(1) member-body(2) us(840) x9-57(10040) x9cm(4) 1 }
RFC 3279

id-ecPublicKey
{ iso(1) member-body(2) us(840) 10045 2 1 }
RFC 3278

11.1.3.
Signature suites

Short object name
OID
Normative references

sha-1withRSAEncryption
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 5 }
RFC 3279

sha224WithRSAEncryption
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 14 }
RFC XXXX

sha256WithRSAEncryption
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 11 }
RFC XXXX

id-RSASSA-PSS with mgf1SHA1Identifier
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 10 }
RFC XXXX

id-RSASSA-PSS 
with mgf1SHA224Identifier
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 10 }
RFC XXXX

id-RSASSA-PSS 
with mgf1SHA256Identifier
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 10 }
RFC XXXX

rsaSignatureWithripemd160
{iso(1) identified-organization(3) teletrust(36) algorithm(3) signatureAlgorithm(3) rsaSignature(1) rsaSignatureWithripemd160(2)}
ISIS-MTT

id-dsa-with-sha1
{ iso(1) member-body(2) us(840) x9-57 (10040) x9cm(4) 3 }
RFC 3279

id-ecdsa-with-sha1
{ iso(1) member-body(2) us(840) ansi-X9-62(10045) signatures(4) 1 }
RFC 3279




11.2
Functions and algorithms identified using URNs

11.2.1
Hash functions

The hash functions are defined using the following URNs:

sha1
http://www.w3c.org/2000/09/xmldsig#sha1

ripemd160
http://www.w3.org/2001/04/xmlenc#ripemd160

sha224
http://www.w3.org/2001/04/xmldsig-more#sha224

sha256
http://www.w3.org/2001/04/xmlenc#sha256

11.2.2
Signature algorithms

There is no need to define such URNs since XAdES use the OIDs contained in signer’s certificates.

11.2.3
Signature suites

The signature suites are defined using the following URNs:
Short object name
URN
Normative references

dsa-sha1
http://www.w3.org/2000/09/xmldsig#dsa-sha1
XML-Signature Syntax and Processing. W3C Recommendation

rsa-sha1
http://www.w3.org/2000/09/xmldsig#rsa-sha1
XML-Signature Syntax and Processing. W3C Recommendation

ecdsa-sha1
http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha1
draft-blake-wilson-xmldsig-
ecdsa-09.txt

rsa-ripemd160
http://www.w3.org/2001/04/xmldsig-more/rsa-ripemd160
draft-blake-wilson-xmldsig-
ecdsa-09.txt

rsa-sha256
http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
draft-blake-wilson-xmldsig-
ecdsa-09.txt

11.3
Recommended hash functions and algorithms that do not yet have an OID

[Editor’s note: to be checked]
11.4
Recommended hash functions and algorithms that do not yet have a URN

[Editor’s note: to be checked. At least Whirlpool is missing a URN]
12.
Algorithms in the context of Advanced Electronic Signatures

12.1
Time period resistance of hash functions and keys

The hash functions and algorithms defined in this document are suitable to be used in the context of advanced electronic signatures as defined by the EESSI documents (both ETSI TSs and CWAs). 

An advanced electronic signatures has to be verified according to a given signature policy. Such a signature policy has a validity period and all the information to maintain the validity of advanced electronic signatures during that time period are defined in the signature policy.

Such definition essentially consists of root keys and such root keys shall remain secure during the whole validity period of the signature policy. However it may be needed to verify of advanced electronic signatures well beyond the end of the validity period of the signature policy under which they have been initially verified.

It may also happen that some keys were secure at the time the initial verification of an advanced electronic signature was performed, but due to some “accident” this is no more the case later on.

In both cases, it is possible to maintain the security of an advanced electronic signature which has already been successfully verified by adding some other data that will allow subsequent verifications.

The way to do it cannot be defined in the signature policy but may be part of rules defined in a “cryptographic maintenance policy” which allows to maintain advanced electronic signatures validity beyond the end of the validity period of the signature policy.

When there is an interest to be able to verify electronic signatures under a given signature policy beyond the end of the validity period of that signature policy, then a latest, before the end of the validity period of that signature policy, one “cryptographic maintenance process” MUST be applied to these electronic signatures. The sooner the process is applied, the better. This process may need to be performed again when advanced electronic signatures need to be verified during a very long time period.

As a general rule, a private key SHALL resist during the validity period of certificates, (defined by the “notBefore” and “notAfter” elements of the validity period field) which contain the corresponding public key. 

Since key sizes are directly dependent upon the usage of the certificate, no single key size value may be given. 

The time period during which a given key shall or should resist depends on the usage of the key. To this respect different use cases will be explored. Once the time period is known, then the figures provided in the previous section (section 10) can be used to know the appropriate key size.

12.1.1
Time period resistance for hash functions

As a general rule, hash functions should resist as long as a signature verification still needs to be done. If not, a specific cryptographic maintenance process will need to be done.

A hash function used to compute the hash of a certificate, that is not a self-signed certificate, should resist during the validity period of that certificate. However, a hash function used to compute the hash of a self-signed certificate shall resist during the validity period of that self-signed certificate.

12.1.2
Time period resistance for signer’s key

The focus is very often placed on the resistance of signer’s keys.

Signer’s keys SHOULD resist during the validity period (from notBefore to notAfter) of the associated certificate. If they don’t, revocation will be necessary, and there would be a large burden to re-issue new keys and certificates. However, there is no security breach.

If a signer’s key does not resist during the validity period of its associated certificate, then the protection provided through the use of time-stamping is sufficient to provide an adequate protection.

For signer’s keys, the lower-lower limit for the resistance should be chosen. 

12.1.3
Time period resistance for root keys

A signature policy includes one or more root keys (in the form of self-signed certificates) to verify certification paths.

A root key used in a signature policy SHALL, at least, resist during the validity period of that signature policy. If it does not, it is a disaster because there are no easy means to know that a root key has been revoked or compromised inside the infrastructure.

For root keys, the upper-lower limit for the resistance should be chosen. 

12.1.4
Time period resistance for other keys

All other keys (TSU keys, CA keys, CRL issuer keys, OCSP responder keys) SHOULD resist during the validity period of the associated certificate. 

If they don’t, a maintenance process has to be applied before the algorithm is broken. 

For these keys, the upper-lower limit for the resistance should be chosen if no maintenance process is being envisaged, while the lower-lower limit for resistance can be chosen if a cryptographic maintenance process is applied.

12.2
Algorithms for the various data structures

ETSI TS 101 733 and ETSI TS 101 903 define the formats of advanced electronic signatures. These two documents reference other documents defining various standardized data structures. 

These other documents or companion documents define the algorithms which SHOULD be supported by the issuers of the data structures and the algorithms which SHALL (for interoperability purposes) and SHOULD be supported by the users of the data structures.

 Signer Certificates (RFC 3280 and RFC 3279),

 Certificate Revocation Lists (RFC 3280 and RFC 3279),

 OCSP responses (RFC 2560),

 Certification Authority Certificates (RFC 3280 and RFC 3279),

 Self-signed certificates for CA certificates (RFC 3280 and RFC 3279),

 Time-Stamping Tokens (TSTs) (RFC 3161 and TS 101 861),

 Time-Stamping Unit certificates (RFC 3161 and TS 101 861),

 Self-signed certificates for TSU Certificates (RFC 3280 and RFC 3279),

 Attribute Certificates (ACs) (RFC 3280 and RFC 3279),

 Attribute Authority Certificates (RFC 3281).

For each data structure, the set of algorithms to be used is specified. Each set is identified by an identifier which is either an OID (Object IDentifier) or a URI /URN. The use of such identifiers is necessary so that interoperability can be achieved. In order to allow for data interchange, the document references algorithms in terms of OIDs and URIs / URNs together with algorithm parameters.

The algorithms which MAY be supported by issuers or users are NOT indicated.

12.2.1
Advanced Electronic Signatures based on ETSI TS 101 733

An advanced electronic signature contains an identifier of the hash function that has been used (contained in the digestAlgorithm element from the SignerInfo data structure) and an identifier of the signature algorithm that has been used (contained in the signatureAlgorithm element from the SignerInfo data structure) which must be consistent with the identifier of the signature algorithm contained in the signer’s certificate.

Requirements apply both to the hash function and the signature algorithm. 

AdES based on TS 101 733
Issuers of AdES
Users of AdES

Hash functions
SHOULD support sha1
SHALL support sha1
SHOULD support MD5

Signature algorithms
SHOULD support RSA
or SHOULD support DSA
or SHOULD support ECDSA
SHALL support RSA
SHOULD support DSA
SHOULD support ECDSA

Note : Since TS 101 733 is built upon RFC 3369, the algorithm requirements defined in RFC 3270 apply. Additional drafts are being proposed for EC algorithms and it has been anticipated what will be required for these algorithms. 

12.2.2
Advanced Electronic Signatures based on ETSI TS 101 903

TS 101 903 uses a URN to reference the hash function in the ds:DigestMethod element.

[More text for XAdES must be added]

AdES based on TS 101 903
Issuers of AdES
Users of AdES

Hash functions
SHOULD support sha1

SHALL support sha1


Signature algorithms
SHOULD support DSAwithSHA1
MAY support RSAwithSHA1, 
or ECDSA
SHALL support DSAwithSHA1
SHOULD support RSAwithSHA1,
or ECDSA

Note : Since TS 101 903 is built upon XML DigSig, the algorithm requirements from XML DigSig apply.

12.2.3
Signer’s certificates

A signer certificate contains a subject public key and is signed by a CA issuing key. Thus requirements apply to signer public keys and CA issuing keys.

Signer certificates
Issuers of signer certificates
Users of signer certificates

Signer public keys
SHOULD support RSA
SHOULD support DSA
SHOULD support ECDSA
SHALL support RSA
SHOULD support DSA
SHOULD support ECDSA

CA issuing keys
SHOULD support RSA with SHA1
SHOULD support DSA with SHA1
SHOULD support ECDSA with SHA1
SHALL support RSA with SHA1
SHOULD support DSA with SHA1
SHOULD support ECDSA with SHA1

Note :The algorithm requirements from RFC 3279 apply.

12.2.4
CRLs

A CRL is signed by a CRL Issuer. Thus requirements apply to CRL Issuer public keys.

CRLs
Issuers of CRLs
Users of CRLs

CRL issuer keys
SHOULD support RSA with SHA1
SHOULD support DSA with SHA1
SHOULD support ECDSA with SHA1
SHALL support RSA with SHA1
SHOULD support DSA with SHA1
SHOULD support ECDSA with SHA1

Note :The algorithm requirements from RFC 3279 apply.

12.2.5
OCSP responses

A CRL is signed by an OCSP responder. Thus requirements apply to OCSP the hash algorithm and the signature algorithm used by OCSp responders.

OCSP response
Issuers of OCSP responses
Users of OCSP response

OCSP responder keys
SHOULD support sha1 with dsa

SHOULD support sha1 with rsa
SHALL support sha1 with dsa
SHOULD support sha1 with rsa

Note :The algorithm requirements from RFC 2560 apply, i.e.: “Clients that request OCSP services SHALL be capable of processing responses signed used DSA keys identified by the DSA sig-alg-oid specified in section 7.2.2 of [RFC2459]. Clients SHOULD also be capable of processing RSA signatures as specified in section 7.2.1 of [RFC2459]. OCSP responders SHALL support the SHA1 hashing algorithm.”

12.2.6
CA certificates

A CA certificate contains a CA public key and is signed by a CA private key. Thus requirements apply to CA public keys (as subject) and CA public keys (as issuer).

CA certificates
Issuers of CA certificates
Users of CA certificates

Subject CA public key
SHOULD support RSA with SHA1
SHOULD support DSA with SHA1
SHOULD support ECDSA with SHA1
SHALL support RSA with SHA1
SHOULD support DSA with SHA1
SHOULD support ECDSA with SHA1

Issuer CA public keys
SHOULD support RSA with SHA1
SHOULD support DSA with SHA1
SHOULD support ECDSA with SHA1
SHALL support RSA with SHA1
SHOULD support DSA with SHA1
SHOULD support ECDSA with SHA1

Note :The algorithm requirements from RFC 3279 apply.

12.2.7
Self-signed certificates for CA issuing CA certificates

A self-signed certificate contains a single root CA public key. Thus requirements apply to root CA public keys.

Self-signed certificates
Issuers of self-signed certificates 
Users of self-signed certificates

Root CA public keys
SHOULD support RSA with SHA1
SHOULD support DSA with SHA1
SHOULD support ECDSA with SHA1
SHALL support RSA with SHA1
SHOULD support DSA with SHA1
SHOULD support ECDSA with SHA1

Note :The algorithm requirements from RFC 3279 apply.

[Editor’s note: Since self-signed certificates need to resist quite long (e.g. 30 years) SHA-256 should be mentioned]
12.2.8
TSTs based on RFC 3161 and TS 101 861

The following requirements apply to hash functions and TST signature algorithms.

Time-Stamping Tokens
TST requesters
TST issuers
TST verifiers

Hash function
SHOULD support Sha1
SHOULD support ripemd160
SHALL support Sha1
SHOULD support ripemd160
SHALL support Sha1
SHOULD support ripemd160

TST signature algorithms
SHALL support 
sha1 with rsa
SHALL support 
sha1 with rsa
SHALL support 
sha1 with rsa

Note :The algorithm requirements from TS 101 861 apply, i.e. :

For the requests: “The following hash algorithms may be used to hash the information to be time-stamped: SHA-1, MD5, RIPEMD-160. It is recommended to use either SHA-1 or RIPEMD-160.”

For the responses “The following signature algorithm must be supported: SHA-1 with RSA”

[Editor’s note: Since time-stamp tokens need to resist quite long (e.g. more than 10 years) SHA-256 should be mentioned]
12.2.9
TSU certificates

A TSU certificate contains a TSU public key and is signed by a CA private key. Thus requirements apply to TSU public keys (as subject) and CA public keys (as issuer).

TSU certificates
Issuers of TSU certificates
Users of TSU certificates

TSU public key
SHOULD support RSA with SHA1
SHOULD support DSA with SHA1
MAY support ECDSA with SHA1

MAY support
SHALL support RSA with SHA1
SHOULD support DSA with SHA1
MAY support ECDSA with SHA1

MAY support

Issuer CA public keys
SHOULD support RSA with SHA1
SHOULD support DSA with SHA1
MAY support ECDSA with SHA1
SHALL support RSA with SHA1
SHOULD support DSA with SHA1
MAY support ECDSA with SHA1

Note :The algorithm requirements from RFC 3279 apply.

12.2.10
Self-signed certificates for CAs issuing TSU certificates

A self-signed certificate contains a single root CA public key. Thus requirements apply to root CA public keys.

Self-signed certificates
Issuers of self-signed certificates 
Users of self-signed certificates

root CA public keys
SHOULD support RSA with SHA1
SHOULD support DSA with SHA1
MAY support ECDSA with SHA1
SHALL support RSA with SHA1
SHOULD support DSA with SHA1
MAY support ECDSA with SHA1

Note :The algorithm requirements from RFC 3279 apply.

[Editor’s note: since self-signed certificates for TSU certificates need to resist quite long (e.g. beyond 10 years) SHA-256 should be mentioned]
12.2.11
Attribute certificates

An Attribute Certificate is signed by an Attribute Authority. Thus requirements apply to Attribute Authority public keys.

Attribute Certificates
Issuers of OCSP Attribute Certificates
Users of OCSP Attribute Certificates

Attribute Authority public keys
SHOULD support RSA with SHA1
SHOULD support DSA with SHA1
MAY support ECDSA with SHA1


SHALL support RSA with SHA1
SHOULD support DSA with SHA1
MAY support ECDSA with SHA1



Note :The algorithm requirements from RFC 3279 apply.

12.2.12
AA certificates

An AA certificate contains an Attribute Authority public key and is signed by a CA private key. Thus requirements apply to Attribute Authority public keys (as subject) and CA public keys (as issuer).

AA certificates
Issuers of AA certificates
Users of AA certificates

Attribute Authority public key
SHOULD support RSA with SHA1
SHOULD support DSA with SHA1
MAY support ECDSA with SHA1

MAY support
SHALL support RSA with SHA1
SHOULD support DSA with SHA1
MAY support ECDSA with SHA1

MAY support

Issuer CA public keys
SHOULD support RSA with SHA1
SHOULD support DSA with SHA1
MAY support ECDSA with SHA1
SHALL support RSA with SHA1
SHOULD support DSA with SHA1
MAY support ECDSA with SHA1

Note :The algorithm requirements from RFC 3279 apply.




Annex A (normative): Updating algorithms and parameters 

A.1
Introduction

Cryptographic algorithms in general do not offer unlimited perfect security in the information-theoretical sense. Their security depends on:

 the difficulty of solving a hard mathematical problem that they are based on, and

 the computational infeasibility of solving the problem using the current technology.

This effectively means that a previously secure cryptographic algorithm cannot be considered secure any longer if, for example,

 a mathematical method has been found so that the previously hard problem the algorithm was based on is no longer hard, or

 the advances in technology make it possible to solve the problem within a significantly shorter period of time.

In any of these cases a cryptographic algorithm cannot be considered secure any longer. It is therefore of crucial importance to establish suitable maintenance practices to cope with such developments to prevent the use of insecure algorithms.

This annex defines the maintenance practices to enable fast and technologically appropriate reactions to new developments in computing technology and new findings in the area of cryptography.

A.2
Maintenance Process

As a response to relevant developments in the area of cryptography and technology, it is necessary to regularly update the lists of recommended algorithms and parameter values. The initial lists of recommended algorithms and their parameter values are given in the present document. This annex identifies several cases where an update is required:

Adopting a new algorithm, hash function or signature suite. As a result of monitoring the relevant developments in cryptography and computing technology, an ESI working group member may propose adoption of a new algorithm or a new signature suite. An algorithm can be adopted if at least one complete set of parameters for this algorithm has been adopted. Definitions of the complete sets of parameters for a specific algorithm are given in the present document.

Withdrawing of an algorithm, a hash function or a signature suite. As a result of monitoring the relevant developments in cryptography and computing technology, an ESI working group member may propose the withdrawal of a currently recommended algorithm or signature suite. The proposal should contain a clear reasoning about the insufficient security of the algorithm or the suite to be withdrawn and about the implications for existing products using this algorithm or suite. 

Updating parameter values for an recommended algorithm, hash function or signature suite. As a result of monitoring the relevant developments in cryptography and computing technology, an ESI working group member may propose an update to the parameter values of an recommended algorithm, hash function or signature suite. The proposal should contain clear reasoning about the insufficient security of the parameter values to be updated and about the implications for existing products using these parameter values. The dates associated with a suite may be extended or reduced in such a proposal.

If any of the components of a signature suite has been updated, then the suite must be updated as well.

Monitoring the relevant developments in cryptography and computing technology is a continuous activity performed by the ETSI SAGE group and National Bodies from ISO. 

The activity should be focused on answering the following questions:

 is a currently recommended algorithm still considered secure ?

 are the currently recommended parameter values for an algorithm still considered secure for a given duration period ?

 are there new algorithms that should be considered? Is there a market demand for such algorithms?

The cancellation/update date should be set in such a way as to allow some transition period within which the algorithm/parameter values to be cancelled/updated may be used in the existing products (e.g. signature devices, digital certificates). It should, however, be indicated that the cancelled/updated items should not be considered for use in new products (e.g. signature devices under development, certificates to be issued). The transition period should allow the vendors using the cancelled/updated items time to alter their production process. If the security implications of a cancellation/update are considered very serious, it should be recommended to withdraw the products using the cancelled/updated item before their planned expiry date.

For example, if a signature key length is no longer considered secure under a medium attack potential (say 260 operations to recover one key), public key certificates containing signature keys of this length should not be used anymore. The data structures where these keys have been used should be protected using Time-Stamping techniques. If such keys can still be used, then they should be revoked as soon as possible. 

When issuing a certificate, a CSP should be careful not to define the validity period of the certificate to be longer than the presumed validity period of the applied cryptographic hash functions, signature algorithms, and their parameter values. It is recommended that the length of the CSP's signature keys (for issuing certificates and CRLs) is always chosen to be equal or longer than the currently recommended key length for the signature suite used.

[Editor’s note: More information should be given about how SAGE will interact with TC ESI, given that TC ESI may be kept “dormant” during some period of time]
A well identified and expected to be maintained for a longer time frame contact point will be established. It is proposed to use the following URL [Editor’s note: to be defined].

Annex B (informative): Recommended key sizes (historical)

This annex is empty in the first version of this document. It will later on contain the tables provided in section 10 so that an history about previous recommended hash functions and key sizes can be easily be done at a given time and for a given time period.

Annex C (informative): Generation of RSA keys for signatures
C.1
Generation of random prime numbers
C.1.1
Probabilistic primality test

The generation of large prime numbers for cryptographic applications is usually done using probabilistic primality tests. These algorithms are very efficient but may declare that a composite number is prime with some (small) probability. The Miller-Rabin test is one such algorithm. It is known that the probability of declaring a composite number as prime is at most (1/4)k after k iterations of the elementary algorithm.

It is known (see Menezes, van Oorschot and Vanstone) that for example, when generating 1000-bit probable primes, Miller-Rabin test with 3 repetitions is sufficient.

The generation of random prime numbers in the range [a,b] can be done using the following algorithm:

 randomly choose an odd integer x in the range [a,b];

 try to divide x by all the prime numbers smaller than a (small) bound B; if x is divisible, go back to the first step;

 using the Miller-Rabin probabilistic primality algorithm, test if x is probably prime; if this is not the case, go back to the first step.

Note that the second step just makes the generation faster since the small prime numbers are the most probable prime factors. Furthermore, this test can be done in a single operation by just testing if x is relatively prime with the precomputed product of all the prime numbers smaller than B.

The probability for an odd integer randomly chosen in the range [a,b] to be prime is about 2/ln(b) so the number of repetitions of the algorithm will be about ln(b)/2. Furthermore, the entropy of k-bit primes generated with this method is about k-ln(k).

From a practical point of view, the time needed to generate a prime number can be reduced if, instead of choosing a new random integer x for each test, we look for the smallest prime number larger than a random integer x. This can be done by sieving, efficiently testing all the numbers in the range x to x+d (for some suitable d) for divisibility by all small primes less than B, before doing any probabilistic primality tests. From a theoretical point of view this makes the distribution of the primes produced less uniform, but in practice the effect is insignificant.

C.1.2
Strong prime numbers

For some cryptographic applications, it is sometimes advised to use so-called strong prime numbers. A prime p is said to be strong if:

 p-1 has a large prime factor r;

 p+1 has a large prime factor;

 r-1 has a large prime factor.

Those additional requirements are made to avoid certain factoring algorithms (Pollard p-1 algorithm and its generalizations). If such verifications can be easily done and if the efficiency of prime number generation is not a critical issue, they can be added to the prime number generation procedure. However, it has been proved that the probability for a randomly chosen prime number to fulfil those requirements is overwhelming for the current parameter sizes. Furthermore, the Pollard method is generalized by the elliptic curve factoring method so it is not possible to make an exhaustive list of weak forms of prime numbers. 

In conclusion, the prime numbers must be randomly chosen and must not have any kind of special form; if this is done, additional tests can be added.

C.2
Generation of RSA modulus

An RSA modulus is obtained by multiplying two prime numbers of roughly the same size. Furthermore, the two factors must not be too close in order to be far enough from the square root of the modulus.

If we let p and q be the two prime factors of the modulus n, we can require that, for example,


0,1 < |log2(p) - log2(q)| < 30

which means that none of the factors is small or close to the square root of the modulus. This condition implies that


log2(n)/2 - 15 < log2(p), log2(q) < log2(n) / 2 + 15
The generation of an RSA modulus of exactly k bits could be done with the following algorithm:

 Choose a random prime number p in the range ]2k/2-15, 2k/2+15[;

 Choose a random prime number q in the range [2k-1/p, 2k/p[;

 If the condition 0.1 < |log2(p)-log2(q)| < 30 is not satisfied, go back to the first step;

 Let n be the product of p and q.

A more complicated method that avoids the third step altogether but produces differently distributed primes is:

 Choose a random prime number p in the range [2k/2-9/20, 2k/2+15[;

 Choose a random prime number q in the range]a,b[ where a=max(ceil(2k-1/p)-1, p.2-30) and b=min(2k/p, p.2-1/10);

 Let n be the product of p and q.

C.3
Generation of RSA keys

An RSA public key is made of an RSA modulus n=p.q generated as explained in the previous section and of a public exponent e. The only requirement for e is to be relatively prime to lcm(p-1,q-1). This public exponent may be chosen as small as e=3.

The related RSA secret key d (or signature generation key) is computed using the extended Euclidean algorithm:


e.d ( 1 mod lcm(p-1,q-1)

The optimization that consists of first choosing the secret exponent d and then computing the public exponent e can be used but in this case d must be randomly chosen. The value of d should not be too small otherwise there are attacks which can factor the modulus (Wiener 1990, Boneh and Durfee 1999, Durfee and Nguyen 1999, see bibliography). A conservative method would be to choose d randomly in a range at least (n from its minimum and maximum values. In practice choosing d uniformly in the range [3,n] has negligible probability of producing an exploitable value. 

Let us also remember that a new modulus n must be used for each user of the signature scheme. A modulus must not be shared by some users, even if different public exponents are used. Furthermore, notice that if the RSA keys are generated as explained above, the probability of generating two keys with the same modulus or the same secret exponent is totally negligible, even if many keys are computed.




Annex D (informative): Generation of elliptic curve domain parameters

[Editor’s note: to be completed]
D.1
ECDSA and ECGDSA based on a group E(Fp)

The prime p can be generated by one of the algorithms described in [25] (ISO/IEC 18032) in a way that the probability of being composite is at most 2-100. 

The generation of an appropriate curve E, the point P and the prime q can be done with the algorithm in Annex A.3.2 of [11] (ANSI X9.62) with lower bound rmin>2qMinLen, with MOV threshold B= r0Min and with Step 4. of algorithm A.3.2 substituted by “4. [???] 

Check the MOV condition (see Annex A.1.1) with inputs B, q and n. If the result is “false” go to Step 1.

Check the Anomalous condition  (see Annex A.1.2). If the result is “false” go to Step 1.

Check whether the class number of the maximal order of the endomorphism ring is at least MinClass. If this is not the case go to Step 1.”

The algorithm to generate E, P and q can be successful only if p is chosen large enough, i.e. at least about as large as  q which itself is greater than 2qMinLen-1.

To select a curve verifiably at random one can use the algorithm given in Annex A.3.3.1 of [11] (ANSI X9.62). Here the bitlength of the SEED has to be at least qMinLen and the hash function SHA-1 has to be substituted by SHA-224 etc. after the recommended use date for SHA-1.

D.2
ECDSA and ECGDSA based on a group E(F2m)

The prime m can be generated by one of the algorithms described in [25] (ISO/IEC 18032) in a way that the probability of being composite is at most 2-100.

The selection of an appropiate curve E, the point P and the prime q can be done with the algorithm in Annex A.3.2 of  [11] (ANSI X9.62) with lower bound rmin>2qMinLen, with MOV threshold B=r0Min and with Step 4. of algorithm A.3.2 substituted by “4. [???]
Check whether the j-invariant satisfies j(E)
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F2 (i.e. E is not defined over F2). If this is not the case go to Step 1.”

Check the MOV condition (see Annex A.1.1) with inputs B, q and n. If the result is “false” go to Step 1.

Check whether the class number of the maximal order of the endomorphism ring is at least MinClass. If this is not the case go to Step 1.”

The algorithm to generate E and P can be successful only if 2m is chosen large enough, i.e. at least about as large as  q which itself is greater than 2qMinLen-1.

To select a curve verifiably at random one can use the algorithm given in Annex A.3.3.1 of  [11] (ANSI X9.62). Here the bitlength of the SEED has to be at least qMinLen and the hash function SHA-1 has to be substituted by SHA-224 etc. after the recommended use date for SHA-1.
Annex E (informative): On the generation of random data

E.1 Classes of random number generators

The following figure shows a schematic classification of random number generators according to [24] ISO/IEC 18031 where more detailed information can be found. That document uses the term “random bit generator” while here the term “random number generator” is used.
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Every random number generator RNG must have a primary entropy source. If this entropy source is non-deterministic which means unrepeatable and unpredictable the RNG is called non-deterministic or a NRNG. If this entropy source consists just of seed values it is called deterministic and also the RNG is called deterministic or a DRNG. 

The primary entropy source of a NRNG can either be physical or non-physical. A physical primary entropy source (also called physical primary noise source) uses dedicated hardware to measure the physical characteristics of a sequence of events in the physical world, e.g. radioactive emissions of atoms or the noise of diodes. Typical non-physical primary entropy sources are based for example on RAM contents, system clocks or “random user inputs” via PC-keyboard or PC-mouse.

If the only entropy source for a RNG is the primary entropy source it is called pure RNG. A RNG can also have an additional entropy source. A NRNG with an additional deterministic entropy source (i.e. seed values) is called hybrid NRNG. A DRNG with an additional non-deterministic entropy source is called hybrid DRNG. 

A well constructed NRNG is information theoretically secure while (pure) DRNGs can only be complexity theoretically secure that means there is no feasible way to break its security. The advantage of the former is obviously that there is no (even theoretical) possibility to calculate future or previous outputs from known ones. The security of DRNGs depends on assumptions about the algorithmic complexity of certain problems which may turn out to be wrong sooner or later. So NRNGs are better suited for long term security.

The following terminology for DRNGs is used in section 9.2.2:

· A re-seeding of a DRNG is a complete new initialization of the DRNG with a newly produced seed. 

· A seed-update of a DRNG is an external modification of the internal state (not by the regular updating function of the DRNG) in a way that: (i) After the modification the modifier has no more information about the internal state than before. (ii) Anybody else than the modifier having some information about the previous internal state has less information about the internal state after the modification. 

Note: The difference between these two possible ways to add new entropy to a DRNG is that if the new seed is known then the future output is known after re-seeding while this is not the case for a seed-update.

Of course it is desirable that after a seed-update the loss of information about the internal state in condition (ii) should be as large as possible. In an ideal case there remains no information. A typical example for that is an XOR of the internal state with a new seed produced with a strong NRNG.

E.2 On tests for NRNGs
Examples of generic test suites for the statistical properties of the primary entropy source can be found in Ruhkin et alt. (2001). But usually tests specifically adapted to the mathematical modell of the source are more suitable.

Online tests should be specific to the primary entropy source. An example for such an online test can be found in Example E7 of AIS 31 (2001).

To avoid a misunderstanding about tests and test suites it should be pointed out that:

There is no test or test suite which can show that the output of a generator has a certain minimum entropy without certain additional statistical assumptions about the source.

Example: The term “universal” for Maurer’s test (Maurer 1991, see bibliography) could cause some confusion about this fact. Actually in Maurer’ article it is assumed that the source is a binary, stationary, ergodic source with finite memory. These assumptions are explicitely mentioned in that article. 

It should also be observed that  an evaluation of a NRNG is only possible as a whole evaluation including the testing of the mathematical model, the online tests and an evaluation of the post-treatment.

Annex F (informative) Algorithms identifiers defined in various documents

F.1.
Algorithms identifiers defined in RFC 3278
“Use of Elliptic Curve Cryptography (ECC) Algorithms in Cryptographic Message Syntax (CMS)”. S. Blake-Wilson, D. Brown, P. Lambert.

Signature suite

ECDSA with SHA1

ecdsa-with-SHA1  OBJECT IDENTIFIER ::= 
{ iso(1) member-body(2) us(840) 10045 signatures(4) 1 }

F.2.
Algorithms identifiers defined in RFC 3279

“Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile”. W. Polk, R. Housley, L. Bassham

Signature suites for CA issuing keys and CRL issuing keys
RSA with SHA1

sha-1WithRSAEncryption OBJECT IDENTIFIER ::= 
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 5 }

DSA with SHA1

id-dsa-with-sha1 OBJECT IDENTIFIER ::= 
{ iso(1) member-body(2) us(840) x9-57 (10040) x9cm(4) 3 }

ECDSA with SHA1

ecdsa-with-SHA1  OBJECT IDENTIFIER ::= 
{ iso(1) member-body(2) us(840) 10045 signatures(4) 1 }

Preferred signature algorithms for subject public keys (any is allowed)
RSA
rsaEncryption OBJECT IDENTIFIER ::= 
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1 1}

DSA

id-dsa OBJECT IDENTIFIER ::= 
{ iso(1) member-body(2) us(840) x9-57(10040) x9cm(4) 1 }

ECDSA

id-ecPublicKey OBJECT IDENTIFIER ::= 
{ iso(1) member-body(2) us(840) 10045 2 1 }




F.3.
Algorithms identifiers defined in RFC 3370

Cryptographic Message Syntax (CMS) Algorithms.

Hash-functions

Note that MD5 is no more generally accepted as a secure hash function. 

sha-1 OBJECT IDENTIFIER ::= 
{ iso(1) identified-organization(3) oiw(14) secsig(3) algorithm(2) 26 }

md5 OBJECT IDENTIFIER ::= 
{ iso(1) member-body(2) us(840) rsadsi(113549) digestAlgorithm(2) 5 }

Signature suite

DSA is always used with the SHA-1 message digest algorithm. The algorithm identifier for DSA is:

id-dsa-with-sha1 OBJECT IDENTIFIER ::=  
{ iso(1) member-body(2) us(840) x9-57 (10040) x9cm(4) 3 }

F.4.
Algorithms identifiers defined in RFC 3447

RFC 3447 (PKCS #1: RSA Cryptography Specifications) specifies the use of the RSA signature algorithm with the SHA-1 and MD5 message digest algorithms. 

Signature algorithm

The algorithm identifier for RSA is :

rsaEncryption OBJECT IDENTIFIER ::= 
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 1 }

F.5
Algorithm identifier defined in RFC 3874

The title of the document is: “A 224-bit One-way Hash Function: SHA-224”
id-sha224

id-sha224  OBJECT IDENTIFIER  ::=  { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) csor(3) nistalgorithm(4) hashalgs(2) sha224(4) }
F.6.
Algorithms identifiers defined W3C Recommendation 
12 February 2002 

This recommendation is about “XML-Signature Syntax and Processing”.

Hash-function

SHA-1 : http://www.w3.org/2000/09/xmldsig#sha1
Signature suite 

DSAwithSHA1 (DSS) : http://www.w3.org/2000/09/xmldsig#dsa-sha1 
(Required)

RSAwithSHA1 (RSA) : http://www.w3.org/2000/09/xmldsig#rsa-sha1 
(Recommended)

F.7. 
Algorithms identifiers defined in <draft-blake-wilson-xmldsig-ecdsa-09.txt>

This document is called: Using the Elliptic Curve Signature Algorithm (ECDSA) for XML Digital Signatures.

Signature suite 

ECDSA : http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha1

Note: Like DSA, ECDSA incorporates the use of a hash function. Currently, the only hash function defined for use with ECDSA is the SHA-1 message digest algorithm.

F.8. 
Algorithms identifiers defined in RFC XXXX

[Editor’s note: The document has been approved by the IESG on October 27, 2004 and thus should get its number before the publication of this Technical Standard.]

This document is called: Additional Algorithms and Identifiers for RSA Cryptography for use in the Internet X.509 Public Key Infrastructure. Certificate and Certificate Revocation List (CRL) Profile. <draft-ietf-pkix-rsa-pkalgs-03.txt>

This document supplements RFC 3279 to describe how to use some newer cryptographic algorithms.

Hash-functions

id-sha224  OBJECT IDENTIFIER  ::=  {{ joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) csor(3) nistalgorithm(4) hashalgs(2) 4 } 

id-sha256  OBJECT IDENTIFIER  ::= { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) csor(3) nistalgorithm(4) hashalgs(2) 1 } 

id-sha384  OBJECT IDENTIFIER  ::=  { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) csor(3) nistalgorithm(4) hashalgs(2) 2 } 

id-sha512  OBJECT IDENTIFIER  ::=  { joint-iso-itu-t(2) country(16) us(840) organization(1) gov(101) csor(3) nistalgorithm(4) hashalgs(2) 3 }

Mask Generation functions

mgf1SHA1Identifier  AlgorithmIdentifier  ::= { id-mgf1, sha1Identifier } 

mgf1SHA224Identifier  AlgorithmIdentifier  ::= { id-mgf1, sha224Identifier } 

mgf1SHA256Identifier  AlgorithmIdentifier  ::= { id-mgf1, sha256Identifier } 

mgf1SHA384Identifier  AlgorithmIdentifier  ::= { id-mgf1, sha384Identifier } 

mgf1SHA512Identifier  AlgorithmIdentifier  ::= { id-mgf1, sha512Identifier } 

Signature algorithms 

id-RSASSA-PSS  OBJECT IDENTIFIER  ::=  { pkcs-1 10 } 
Signature suites 

sha224WithRSAEncryption  OBJECT IDENTIFIER  ::=  { pkcs-1 14 } 

sha256WithRSAEncryption  OBJECT IDENTIFIER  ::=  { pkcs-1 11 } 

sha384WithRSAEncryption  OBJECT IDENTIFIER  ::=  { pkcs-1 12 } 

sha512WithRSAEncryption  OBJECT IDENTIFIER  ::=  { pkcs-1 13 } 
F.9. 
Algorithms identifiers defined in <draft-eastlake-xmldsig-uri-09.txt>
[Editor’s note: The document has not yet been approved by the IESG and thus it is unknown whether it will get an RFC number before the publication of this Technical Standard.]

MD5

http://www.w3.org/2001/04/xmldsig-more#md5

SHA-224

http://www.w3.org/2001/04/xmldsig-more#sha224
SHA-384

http://www.w3.org/2001/04/xmldsig-more#sha384
RSA-MD5

http://www.w3.org/2001/04/xmldsig-more#rsa-md5
RSA-SHA256

http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
RSA-RIPEMD160

http://www.w3.org/2001/04/xmldsig-more/rsa-ripemd160
ECDSA-SHA*

http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha1

http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha224

http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256

http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha384

http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512




Annex G (informative): Explanatory text about the “liberal view” and the “conservative view
There are generally speaking two approaches to assessing the resistance of hash functions and algorithms to attack:

· Extrapolation based on published attacks.

· Estimating an adversary’s power from first principles.

We briefly discuss these two options below before stating why we opt for the second method of analysis.

Extrapolation based on published attacks:

One way to approach the security of algorithms is to ask: “Based on past experience, what are the key sizes believed to be currently breakable and likely to be breakable in the coming years ? ” 

It should be observed that many times, instead of answering that question, the following response is given : “Here are the key sizes believed to be currently unbreakable, as well as the key-sizes believed to be unbreakable in the coming years”.

There is however a gap between breakable key sizes and unbreakable key sizes, which we have stated as the difference between a liberal and conservative view in sections 10.1 and 10.2. There are advantages and disadvantages of a methodology based on based on past experience:

Advantages : 

The method is easy to apply; points can be gathered and plotted, and best-fit lines easily constructed. Also, it is relatively “objective” since only published data is used, and there are no hidden estimates or subjective factors. 

Disadvantages : 

The method cannot be applied directly to every algorithm of interest. For example there are no fully published attacks yet on SHA-1 and few informative attacks on DSA/EC-DSA compared with those on RSA. More significantly, it gives a false sense of security, since some algorithms without a history of published attacks may nonetheless be vulnerable. 

Unpublished attackers may well have greater budget, dedicated hardware, and better algorithms than attacks carried out in public. As one example, simple 56-bit DES was only publicly broken in 1997, but was believed on heuristic grounds to be breakable by special purpose hardware as far back as its approval (1977).  It is possible to apply a correction estimate (e.g. use an RSA key at least double the length of the last key publicly broken), but this is very subjective.

Estimates based on past experience answer to the question raised, i.e. “what are the key sizes believed to be currently breakable and likely to be breakable in the coming years?”

Estimating an adversary’s power from first principles

Instead of drawing on published trends and attempting to extrapolate them, an alternative approach is to estimate directly how much power an adversary is likely to have, and what can be accomplished with this power. Estimates based on this alternative approach provide the answer to the following question:

“What are the key sizes believed to be currently unbreakable, as well as the key-sizes believed to be unbreakable in the coming years? ”

Security margins are simply based on the cost of cryptanalysis. In practice, an adversary would generally find it cheaper to steal or copy the existing private key, or else to trick its legitimate holder into misuse. Such forms of attack can be much more effective than breaking keys by brute force. Increasing key-sizes beyond what is already standard practice would therefore add little to overall security.

In general the security parameters for an algorithm are given a lower-lower limit and an upper-lower limit. If a selected parameter is less than the lower-lower limit then the algorithms is expected to become weaker in the near future. The upper-lower limit seems to be sufficient for a resistance during longer time.  Depending on the context of the use of the algorithm, a more liberal approach to the security parameter (the lower-lower limit) or a more conservative approach (the upper-lower limit) may be appropriate.

It can be said that a given key size (for a given algorithm) seems usable at least until year 20xx, which does not mean that for sure it will be unusable after that date.

Recommendations apply on key-sizes and usage periods for the following algorithms: SHA-1, RSA, DSA and EC-DSA. These recommendations are provided with extra remarks explaining the methodology and reservations. 

The recommendations from this annex should not be read in isolation from various reservations. There are a great many uncertainties in some estimates, and predicting the future progress of cryptology can never be an exact science.

G.1
Estimates based on past experience

G.1.1
Attacks on SHA-1

In the case of a unique hash function like SHA-1, standard extrapolation is not possible, since there is no variable key or key-length. Either a collision is known or it isn’t. Indirect estimates may be used: observing that for a well-constructed hash function with digest length n, finding a collision is about as hard as breaking a symmetric key of length n/2 by exhaustive search, it may be expected that collisions of SHA-1 will be found at about the same time that keys of size 80 will broken for some otherwise sound symmetric ciphers. 

In recent years there have been significant advances to attacking various hash functions in the SHA-family. SHA-0 can no longer be considered secure (see [BihamChen]). There have also been significant attacks on lesser round variants of SHA-1, but these do not immediately threaten the security of SHA-1 itself.  It is generally accepted that the related hash function MD-5 is completely insecure at this point for use in longer term applications.

The SHA-2 family of hash functions are sufficiently different from SHA-1 so as to make any direct application of the SHA-1 attacks not viable at the moment.

G.1.2
Attacks on RSA

Although it has never been proven, it is conjectured that breaking the RSA algorithm for a given key is equivalent to factoring the key’s public modulus. This is certainly the case for known cryptanalytic attacks on RSA: they have all enabled the private key to be recovered, and the modulus to be factored. 

The table below gives a list of published factorisation records, mostly attacks on RSA of particular key-sizes. These attacks have used various algorithms and hardware over the years, but all the most recent attacks have involved distributed, general-purpose computers running the Generalized Number Field Sieve (NFS). 

Observe that in some instances the number already had a known factor, and hence the “size” concerned is that of the largest known co-factor. The table is extracted from [2], with  two recent additions in the final row.

Year
Digits (of number or known factor)
Number
Who
Method
Hardware

1970
39
2128 + 1
Brillhart/
Morrison
CFRAC
IBM Mainframe

1978
45
2223 – 1
Wunderlich
CFRAC
IBM Mainframe

1981
47
3225 – 1
Gerver
QS
HP-3000

1982
51
591 – 1
Wagstaff
CFRAC
IBM Mainframe

1983
63
1193 + 1
Davis/
Holdridge
QS
Cray

1984
71
1071 – 1
Davis/
Holdridge
QS
Cray

1986
87
5128 + 1
Silverman
MPQS
LAN Sun-3’s

1987
90
5160 + 1
Silverman
MPQS
LAN Sun-3’s

1988
100
11104 + 1
Internet
MPQS
Distributed

1990
111
2484 + 1
Lenstra/
Manasse
MPQS
Distributed

1991
116
10142 + 1
Lenstra/
Manasse
MPQS
Distributed

1992
129
RSA-129
Atkins
MPQS
Distributed

1996
130
RSA-130
Montgomery
GNFS
Distributed

1998
140
RSA-140
Montgomery
GNFS
Distributed

1999
155
RSA-512
Montgomery
GNFS
Distributed

2002
158
2953 – 1
Bahr/
Franke/
Kleinjung
GNFS
Distributed

2003
174
RSA-576
Franke et al.
GNFS
Distributed

These values can be plotted graphically and extrapolated. The pattern appears linear, and suggests that while 512 bit moduli are definitely insecure, the more commonly-used moduli (1024 bit) will not be publicly factored for several decades [2].
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At present there have been no new methods developed that seriously alter this trend (see [15] for recent improvements in number field sieve factorization. 

G.1.3
Attacks on DSA

It is possible to attack a DSA system by computing discrete logarithms in the underlying integer field. The best-known algorithm for discrete logarithms over a finite integer field (DLNFS) has the same asymptotic behaviour as that for factoring integers (NFS). However the constant factors are a bit different. Experience shows that computing a DL over a finite field whose size is an n-bit integer is roughly as hard as factoring an n+20 bit integer. [5]. Thus estimates based on the hardness of integer factorisation can be applied to discrete logarithm computations. Crudely, the safe field-size in DSA will be the same as the safe modulus-size for RSA. 

DSA may also be attacked by computing sub-group discrete logarithms (SDL) within a special sub-group of the full field. Estimates of how hard this is for a given sub-group size may be based on attacks against EC-DSA, since the algorithmic performance of the best known attack (still Pollard-Rho) is similar [5]. 

Again, this analysis suggests that commonly-used standard fields (1024 bit) and standard keys (160 bit) will not be publicly attacked for several decades.

G.1.4
Attacks on EC-DSA 

It is conjectured that breaking EC-DSA for a given key is equivalent to being able to compute discrete logarithms in the group of the corresponding elliptic curve. Some published records on discrete logarithms for particular “challenge” curves are listed below [4]. 

These were all based on the Pollard-Rho algorithm, which is able to extract discrete logarithms in any finite group. No speed-up attacks are known on general Elliptic Curves, although a few special attacks apply to some poorly chosen, non-random curves.

Challenge 
End Date
Elliptic Curve Operations 
Iterations per second 
Machine Days 

ECCp-79 
Dec. 6, 1997 
1.4 x 1012 
314000 
52 

ECC2-79 
Dec. 16, 1997
1.7 x 1012 
170000 
116 

ECCp-89 
Jan. 12, 1998 
2.4 x 1013 
388000 
716 

ECC2-89 
Feb. 9, 1998
1.8 x 1013
187000
1114

ECCp-97 
Mar. 18, 1998 
2.0 x 1014 
361000 
6412 

ECC2K-95 
May 21, 1998
2.2 x 1013
149000
1709

ECC2-97 
Sep. 22, 1999
1.2 x 1014
227000
6118

ECC2K-108 
Apr 4, 2000
2.3 x 1015
160364
166000

ECCp-109
Nov 6, 2002
Not yet published
Not yet published
c. 5500000

Further extrapolation based on such a short period of data is difficult. However, much as for RSA, the indications are that commonly-used curves (key-sizes of 163 bits or more) will not be publicly attacked for several decades to come. 

G.2
Estimates based on power of computation

Such an approach involves compounding several estimates, namely:

1. an estimate of the likely budget the adversary has to spend. (e.g. measured in $ x day),

2. an estimate of the relevant resource acquired for that budget (e.g. total number of elementary computational operations),

3. an estimate of the attack algorithm that the adversary will use, to minimize resource consumed for attacking a given key-size,

4. an estimate of the attack algorithm’s actual complexity, in order to calculate the largest key-size that the adversary can break.

The best-known work to this effect has been published by Lenstra and Verheul [5] and their baseline table of estimates is included below. 

Observe that the evaluation for RSA and DSA looks at two sorts of attacks, and hence produces two recommended key-sizes/SDL field sizes. The first entry assumes the adversary is capable of dedicated hardware attacks (the “computational equivalent” model), whereas the second assumes the adversary can conduct only slower software-based attacks with general purpose computers (the more liberal “cost equivalent” model). 

The evaluation for EC also has two recommended key-sizes, based on two future projections: one in which there is cryptanalytic progress against elliptic curves comparable to that against RSA, and another in which there is no progress beyond the best general attack method (Pollard Rho).

Year
Symmetric Key Size
Classical Asymmetric Key Size (and SDL Field Size)
Subgroup Discrete Logarithm Key Size
Elliptic Curve Key Size
Infeasible number of Mips Years
Lower bound for Hardware cost in US $ for a 1 day attack
Corresponding number of years on 450MHz PentiumII PC





Progress








Yes
No




1982
56
  417   288
102
105
85
5.00 * 105
3.98 *107
1.11 * 103

1983
57
  440   288
103
107
88
8.51 * 105
4.27 * 107
1.89 * 103

1984
58
  463   320
105
108
89
1.45 * 106
4.57 * 107
3.22 * 103

1985
59
  488   320
106
110
93
2.46 * 106
4.90 * 107
5.47 * 103

1986
60
  513   352
107
111
96
4.19 * 106
5.25 * 107
9.31 * 103

1987
60
  539   384
108
113
98
7.13 * 106
5.63 * 107
1.58 * 104

1988
61
  566   384
109
114
101
1.21 * 107
6.04 * 107
2.69 * 104

1989
62
  594   416
111
116
104
2.06 * 107
6.47 * 107
4.58 * 104

1990
63
  622   448
112
117
106
3.51 * 107
6.93 * 107
7.80 * 104

1991
63
  652   448
113
119
109
5.97 * 107
7.43 * 107
1.33 * 105

1992
64
  682   480
114
120
112
1.02 * 108
7.96 * 107
2.26 * 105

1993
65
  713   512
116
121
114
1.73 * 108
8.54 * 107
3.84 * 105

1994
66
  744   544
117
123
117
2.94 * 108
9.15 * 107
6.53 * 105

1995
66
  777   544
118
124
121
5.00 * 108
9.81 * 107
1.11 * 106

1996
67
  810   576
120
126
122
8.51 * 108
1.05 * 108
1.89 * 106

1997
68
  844   608
121
127
125
1.45 * 109
1.13 * 108
3.22 * 106

1998
69
  879   640
122
129
129
2.46 * 109
1.21 * 108
5.48 * 106

1999
70
  915   672
123
130
130
4.19 * 109
1.29 * 108
9.31 * 106

2000
70
  952   704
125
132
132
7.13 * 109
1.39 * 108
1.58 * 107

2001
71
  990   736
126
133
135
1.21 * 1010
1.49 * 108
2.70 * 107

2002
72
1028   768
127
135
139
2.06 * 1010
1.59 * 108
4.59 * 107

2003
73
1068   800
129
136
140
3.51 * 1010
1.71 * 108
7.80 * 107

2004
73
1108   832
130
138
143
5.98 * 1010
1.83 * 108
1.33 * 108

2005
74
1149   864
131
139
147
1.02 * 1011
1.96 * 108
2.26 * 108

2006
75
1191   896
133
141
148
1.73 * 1011
2.10 * 108
3.84 * 108

2007
76
1235   928
134
142
152
2.94 * 1011
2.25 * 108
6.54 * 108

2008
76
1279   960
135
144
155
5.01 * 1011
2.41 * 108
1.11 * 109

2009
77
1323  1024
137
145
157
8.52 * 1011
2.59 * 108
1.89 * 109

2010
78
1369  1056
138
146
160
1.45 * 1012
2.77 * 108
3.22 * 109

2011
79
1416  1088
139
148
163
2.47 * 1012
2.97 * 108
5.48 * 109

2012
80
1464  1120
141
149
165
4.19 * 1012
3.19 * 108
9.32 * 109

2013
80
1513  1184
142
151
168
7.14 * 1012
3.41 * 108
1.59 * 1010

2014
81
1562  1216
143
152
172
1.21 * 1013
3.66 * 108
2.70 * 1010

2015
82
1613  1248
145
154
173
2.07 * 1013
3.92 * 108
4.59 * 1010

2016
83
1664  1312
146
155
177
3.51 * 1013
4.20 * 108
7.81 * 1010

2017
83
1717  1344
147
157
180
5.98 * 1013
4.51 * 108
1.33 * 1011

2018
84
1771  1376
149
158
181
1.02 * 1014
4.83 * 108
2.26 * 1011

2019
85
1825  1440
150
160
185
1.73 * 1014
5.18 * 108
3.85 * 1011

2020
86
1881  1472
151
161
188
2.94 * 1014
5.55 * 108
6.54 * 1011

2021
86
1937  1536
153
163
190
5.01 * 1014
5.94 * 108
1.11 * 1012

2022
87
1995  1568
154
164
193
8.52 * 1014
6.37 * 108
1.89 * 1012

2023
88
2054  1632
156
166
197
1.45 * 1015
6.83 * 108
3.22 * 1012

2024
89
2113  1696
157
167
198
2.47 * 1015
7.32 * 108
5.48 * 1012

2025
89
2174  1728
158
169
202
4.20 * 1015
7.84 * 108
9.33 * 1012

2026
90
2236  1792
160
170
205
7.14 * 1015
8.41 * 108
1.59 * 1013

2027
91
2299  1856
161
172
207
1.21 * 1016
9.01 * 108
2.70 * 1013

2028
92
2362  1888
162
173
210
2.07 * 1016
9.66 * 108
4.59 * 1013

2029
93
2427  1952
164
175
213
3.52 * 1016
1.04 * 109
7.81 * 1013

2030
93
2493  2016
165
176
215
5.98 * 1016
1.11 * 109
1.33 * 1014

2031
94
2560  2080
167
178
218
1.02 * 1017
1.19 * 109
2.26 * 1014

2032
95
2629  2144
168
179
222
1.73 * 1017
1.27 * 109
3.85 * 1014

2033
96
2698  2208
169
181
223
2.95 * 1017
1.37 * 109
6.55 * 1014

2034
96
2768  2272
171
182
227
5.01 * 1017
1.46 * 109
1.11 * 1015

2035
97
2840  2336
172
184
230
8.53 * 1017
1.57 * 109
1.90 * 1015

2036
98
2912  2400
173
185
232
1.45 * 1018
1.68 * 109
3.22 * 1015

2037
99
2986  2464
175
186
235
2.47 * 1018
1.80 * 109
5.49 * 1015

2038
99
3061  2528
176
188
239
4.20 * 1018
1.93 * 109
9.33 * 1015

2039
100
3137  2592
178
189
240
7.14 * 1018
2.07 * 109
1.59 * 1016

2040
101
3214  2656
179
191
244
1.22 * 1019
2.22 * 109
2.70 * 1016

2041
102
3292  2720
180
192
247
2.07 * 1019
2.38 * 109
4.60 * 1016

2042
103
3371  2784
182
194
248
3.52 * 1019
2.55 * 109
7.82 * 1016

2043
103
3451  2880
183
195
252
5.99 * 1019
2.73 * 109
1.33 * 1017

2044
104
3533  2944
185
197
255
1.02 * 1020
2.93 * 109
2.26 * 1017

2045
105
3616  3008
186
198
257
1.73 * 1020
3.14 * 109
3.85 * 1017

2046
106
3700  3072
187
200
260
2.95 * 1020
3.36 * 109
6.55 * 1017

2047
106
3785  3168
189
201
264
5.02 * 1020
3.60 * 109
1.11 * 1018

2048
107
3871  3232
190
203
265
8.53 * 1020
3.86 * 109
1.90 * 1018

2049
108
3959  3328
192
204
269
1.45 * 1021
4.14 * 109
3.23 * 1018

2050
109
4047  3392
193
206
272
2.47 * 1021
4.44 * 109
5.49 * 1018

Attention is drawn to the following controversial points.

1. Lenstra and Verheul’s chosen measure of computational resource (computational operations) may not be the best true measure of adversary cost.  

For example: 

· A recent paper by Silverman for RSA laboratories [2] argues that cost considerations should explicitly count memory cost too. This cost is certainly non-trivial for general-purpose computers running the Number Field Sieve. 

· A recent paper by Bernstein [6] generalises this, by arguing that the true cost function is proportional to the product of the total number of components and the number of clock-cycles.  (This is the so-called AT= Area x Time measure used in VLSI design). This argument appears to be valid for bulk-throughput attacks using special-purpose hardware, but less valid for one-off attacks (see Lenstra and Verheul’s response [7]).

· Very recently, Shamir and Tromer [8] have extended Bernstein’s idea with a particular hardware design (TWIRL), which could efficiently perform the sieving step of the Number Field Sieve. Their cost estimate, after discounting one-off development costs, suggests a $10 million machine could factor a 1024-bit RSA key in a year, which is about 20 times Lenstra and Verheul’s $day estimate for 2002. RSA Laboratories [9] view TWIRL as validating the rough equivalence of 1024 bit RSA with 80 bit symmetric; again this contrasts somewhat with Lenstra and Verheul’s original estimate (~72 bit symmetric). 

2. One of Lenstra and Verheul baseline assumptions is an oft-quoted version of “Moore’s Law” (computational operations per unit cost doubles every 18 months). This may prove unreliable. 

In particular the 18 month figure for doubling of computational operations seems to have no real historical basis, either in what Gordon Moore said, or what chip manufacturers have delivered [10]. 

However, it is interesting to observe that the rate of progress for resources measured by the combined (Area x Time) metric is much faster than the rate of progress for either “Area” or “Time” alone, and on this basis the 18 month figure can be given some validity. 

It is difficult to replace Lenstra and Verheul’s 18 month baseline with something more accurate but is should be pointed that some of Lenstra and Verheul’s table future rows come with very wide error bars.

3. Lenstra and Verheul’s analysis does not cover quantum computers, which may be able to attack RSA, DSA and EC-DSA keys vastly more efficiently than classical computers [12].

It is beyond ETSI technical expertise to decide whether quantum computers of a sufficiently large size can be built at all, let alone to predict when they might be developed. Note, though, that if somebody think large scale quantum computers will become available within the lifetime if a digital signature scheme, then protection will not be obtained by choosing a larger RSA, DSA or EC‑DSA key — but by choosing a different algorithm altogether.

G.3
Recommended key sizes and use dates drawn from past estimates

G.3.1
Hash functions

For SHA-1, it is currently impossible to predict if and when a collision will be possible. There have however been significant advances in analysing hash functions on the past year which could affect future estimates for the strength of commonly used hash functions.

G.3.2
Algorithms

For RSA, the more commonly-used moduli (1024 bit) will not be publicly factored for several decades [2].

For DSA, commonly-used standard fields (1024 bit) and standard keys (160 bit) will not be publicly attacked for several decades.
For EC-DSA, commonly-used curves (key-sizes of 163 bits or more) will not be publicly attacked for several decades to come.

[More text to be provided ?]
G.4
Recommended key sizes and use dates drawn from Lenstra and Verheul’s table

The following general observations apply:

1. Any specific quoted dates in the future are drawn directly from Lenstra and Verheul’s table [5] and should not be used or quoted in isolation from our stated reservations. In particular, the “use-by” date of any given key should ideally be adjusted based on the value to the attacker of compromising that particular key, and hence the likely budget that the attacker will invest. This value must be based not just on what the key signs in normal use, but everything it could sign under the attacker’s misuse before detection.

2. Large key-sizes impose a high processing cost, particularly where high signature throughput is required in a server environment, or where key-pair generation occurs within a smart card. Recommendations distinguish “low-end” from “high end” environments; key-sizes longer than would be usable in practice are not recommended. 

3. It is common in standard cryptographic toolkits to use powers of 2 for RSA and DSA key-sizes, or just to use NIST’s standard Elliptic Curves [13]. Since the document focus is on standards, alternatives are not considered.

4. A key or hash function should not be used to construct a new signature after its stated use-by date, nor should a CA public key be trusted in verification software beyond the stated use-by date of the key. 

5. If a signature constructed prior to the use-by date of the signing key (or hash function) still needs to retain reliability beyond this date, then it must be time-stamped some time prior to the use-by date, and with a longer key (or larger digest). Repeat time stamping may be required for very long-lived signatures.

In our sections in the normative section no distinction is made regarding the environment in which the algorithm and hash function is being used. Here we provide some heuristic information on the effect of the environment on key size recommendation. It is intended for informative purposes only:
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