[image: image7.wmf]

TD <>
draft ETSI TS 102 176-2 V.0.1.0 (2004-11)
Technical Standard

Electronic Signatures and Infrastructures (ESI);

Algorithms and parameters for Electronic Signatures
Part 2: Symmetric algorithms and protocols for secure channels

Reference

DSR/ESI-000016

Keywords

e-commerce, electronic signature, security

ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, send your comment to:
editor@etsi.org
Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2004.

All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.
TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members. 3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

Contents

4Intellectual Property Rights

Foreword
4
Introduction
4
1
Scope
5
2
References
5
3
Definitions and abbreviations
6
3.1
Definitions
6
3.2
Abbreviations
6
4.
Maintenance activities
6
5.
Secure messaging for smart cards
6
5.1
General
6
5.2
Channel keys establishment
7
5.2.1
Authentication steps
7
5.2.2
Session Key creation
8
5.2.3
Compute channel keys
8
5.2.4.
Compute send sequence counter SSC
9
5.3
Secure Messaging Mode
9
5.3.1.
CLA byte
9
5.3.2.
TLV coding of command and response message
10
5.3.3.
Treatment of SM-Errors
10
5.3.4.
Padding for checksum calculation
10
5.3.5.
Message structure of Secure Messaging APDUs
10
Annex A (normative) - Use of TDES
14
Annex B (informative): Major changes from previous versions
15
Annex C (informative): Bibliography
15
History
15

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

All published ETSI deliverables shall include information which directs the reader to the above source of information.

Foreword

This Technical Specification (TS) has been produced by ETSI Technical Committee Electronic Signatures and Infrastructures (ESI).

Introduction

The present document provides for security and interoperability for the application of the underlying mathematical algorithms and related parameters for electronic signatures in accordance with the Directive 1999/93/EC
of the European Parliament and of the Council of 13 December 1999 on a Community framework for electronic signatures [1].

The first part of this technical standard defines a list of cryptographic algorithms together with the requirements on their parameters, as well as the recommended combinations of algorithms in the form of "signature suites" to be used with the data structures defined in the documents developed under the EESSI (European Electronic Signature Standardization Initiative). The present document contains several informative annexes which provide useful information on a number of subjects mentioned in the text.

The present part of this technical standard (symmetric algorithms and protocols for secure channels) defines a list of symmetric algorithms and protocols to be used with protocols to construct a secure channel between an application and a signature creation device (SCDev) providing either only integrity or both integrity and confidentiality. Such a secure channel may be used during the operational phase of a signature creation device to remotely download a private key in the signature creation device, remotely extract a public key from the signature creation device when the key pair has been generated by the signature creation device or/and remotely download a public key certificate and associate it with a private key already stored in the signature creation device

1
Scope

The present document defines a set of symmetric algorithms and protocols to be used with protocols to construct a secure channel between an application and a signature creation device providing either only integrity or both integrity and confidentiality. Such a secure channel may be used during the operational phase of a signature creation device to remotely download a private key in the signature creation device, remotely extract a public key from the signature creation device when the key pair has been generated by the signature creation device or/and remotely download a public key certificate and associate it with a private key already stored in the signature creation device

The protocols and algorithms defined in the present document are consistent with the following document:

· CWA 14 890-1: Application interface for smart cards used as secure signature creation devices - part 1: basic requirements

Patent related issues are out of the scope of the present document.

2
References

The following document contains provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication and/or edition number or version number) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

[1]
Directive 1999/93/EC of the European Parliament and of the Council of 13 December 1999 on a Community framework for electronic signatures.

[2]
ISO/IEC 7816-4 (1995): “Information Technology - Security Techniques - Integrated circuit(s) cards with contacts -- Part 4: Interindustry commands for interchange”.

[3]
ISO/IEC 9797-1 (1998): “Information Technology - Security Techniques - Message Authentication Codes (MACs) - Part 1: Mechanisms using a block cipher”.

[4]
ISO/IEC 11568-2 (1994): “Banking - Key management (retail) - Part 2: Key management techniques for symmetric ciphers”.

[5]
“The order of encryption and authentication for protecting communications (or: How secure is SSL?)” by Hugo Krawczyk. In Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 310-331, Springer-Verlag, 2001.

[6]
ANSI X 9.63, “Elliptic Curve Key Agreement and Transport Protocols”.

[7]
CWA 14 890-1: Application interface for smart cards used as secure signature creation devices - part 1: basic requirements.

[8]
Federal Information Processing Standards Publication (FIPS PUB) 46-3, "Data Encryption Standard (DES)", National Bureau of Standards, Gaithersburg, MD (1999).

3
Definitions and abbreviations

3.1
Definitions

Host Application
An application able to establish a secure channel with the SCDev.
Interface Device
A device that is the physical interface by which the communication between the card and the host application is handled. The communication may be with a contact interface, a contactless interface, or both.
3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

CWA
CEN Workshop Agreement

DES
Data Encryption Standard

DO
Data Object

HA
Host Application

IFD
InterFace Device

SAGE
Security Algorithms Group of Experts (from ETSI)

SM
Secure Messaging

SCDev
Signature-Creation Device

TDES
Triple DES

4.
Maintenance activities

As a response to relevant developments in the area of cryptography and technology, activities for the maintenance of the symmetric algorithms and protocols for secure channels shall enable dynamic updating of the lists of recommended algorithms and protocols. An initial list of recommended symmetric algorithms and protocols for secure channels is given in the present document.

The present document describes the establishment of two symmetric channel keys using symmetric cryptography only, and does not consider an option for asymmetric cryptography. However, in the future, there can be evolutions towards asymmetric mechanisms for establishing secure channels keys between HA and SCDev.

The maintenance activity is carried by ETSI ESI with the cooperation of the SAGE group. In order to allow an easy follow up of this document, an history of the changes will be maintained.

5. Secure messaging for smart cards

5.1
General

The secure channel, while being used, is based on symmetric channel keys. There are two channel keys: one for the computation of a Message Authentication Code (MAC) and another one to be used for confidentiality when needed. These channel keys may be preinstalled or dynamically negotiated.

The former case is called “Static SM” where static symmetric channel keys are reserved for secure messaging. In that case the channel keys are always available in the card. A key agreement/derivation method is therefore not required.

In the later case, symmetric channel keys must be established using symmetrical or asymmetric cryptography. The present document does not consider, for the moment, asymmetrical cryptography to establish the negotiated channel keys. However, in the future, there can be evolutions towards asymmetric mechanisms for establishing secure channels keys between HA and SCDev.

When symmetrical cryptography is used to establish the channel keys, these keys are derived after the establishment of a single Session Key KSK. Once the channel keys are established, a trusted channel is then available to protect or conceal the information transmitted over the interface from either side.

5.2 Channel keys establishment

When symmetrical cryptography is used, a single Session Key is established after a successful mutual authentication. For Session Key establishment the TDES algorithm shall then be used.

5.2.1
Authentication steps

In the following we use the notation E [KENC] (data) to describe the encryption of ‘data’ using a TDES key KENC. The notation MAC [KMAC] (data) describes the computation of a MAC over ‘data’ using a TDES key KMAC.

KMAC and KENC shall be different and shall be both available on the HA and the SCDev side.

Step
IFD
Transmission
SCDev

1
READ BINARY of file EF.SN.SCDev

Or

GET DATA respectively
(
(
Read data from specified file

SN.SCDev as response

2
GET CHALLENGE
(
(
RND.SCDev

3
MUTUAL AUTHENTICATE

Generate Key KHA

S = RND.HA || SN.HA || RND.SCDev || SN.SCDev || KHA
E[KENC](S) || MAC[KMAC](E[KENC](S))

Verify RND.HA, SN.HA

Generate Session Key KSK (see 5.2.2)

Generate SSC.HA

(
(
SCDev decrypts input and compares RND.SCDev with the previous response

Verify RND.SCDev, SN.SCDev

Generate Key KSCDev
Generate Session Key KSK (see 5.2.2)

Generate SSC.SCDev

Return:

R = RND.SCDev || SN.SCDev || RND.HA || SN.HA || KSCDev
E[KENC](R) || MAC[KMAC](E[KENC](R))

Both sides authenticated and session key seeds available

KENC is a TDES key being used in a DES in CBC mode (see Annex A, “Use of TDES”). The IV for the CBC-encryption is set to all zero ‘00000000 00000000’.

KMAC is TDES key being used according checksum calculation. The initial check block is set to zero '0000000000000000' and the MAC length is 8 bytes.

No padding is required for the encryption on either side because the data is already available as a multiple of 8.

RND.SCDev and KSCDev are random numbers which are generated by the SCDev where RND.HA and KHA are random numbers which are generated by the HA. The random numbers RND.SCDev and RND.HA are 8 bytes long.

The random numbers KSCDev and KHA are 32 bytes long each and are used to generate the session keySCDev. SN.HA and SN.SCDev are the 8 least significant bytes of the serial numbers of the HA and the SCDev, respectively.

[Editor’s note: how can an host application determine the value of the serial number to be used ?]

5.2.2
Session Key creation

The goal of the authentication procedure is the agreement of channel keys for building cryptograms and cryptographic checksums with TDES. In a first step, the 32-byte values KHA and KSCDev are exclusively or-ed to build the Session Key KSK.

KSK = KHA (KSCDev
Then the actual channel keys are built from KSK according to section 5.2.3

5.2.3
Compute channel keys

Ki (ENC)
describes the TDES key being used to encrypt and decrypt data.

Ki (MAC)
describes the TDES key being used to compute and verify a cryptographic checksum.

i = a
describes the first 8 bytes of the TDES key.

i = b
describes the second 8 bytes of the TDES key.

Two 16-byte channel keys are required for secure messaging: one for MAC computation and one for confidentiality protection, if required.

Key derivation from the common secret KSK is performed according to ANSI X 9.63, “Elliptic Curve Key Agreement and Transport Protocols” [6]. Let c be a 32 bit counter. Both HA and SCDev compute :

HASH1 = hSM (KSK || c) with c=1

and

HASH2 = hSM (KSK || c) with c=2.

where the hash function hSM is defined here as SHA-1.

Bytes 1..8 of HASH1 form the key Ka(ENC), and bytes 9..16 build the key Kb(ENC).

Bytes 1..8 of HASH2 form the key Ka(MAC), and bytes 9..16 build the key Kb(MAC).

[Editor’s note: the following drawing will be modified in the next draft because it uses ICC that is not a notation that is used. KHA/ICC = KSK]

[image: image1.png]Kiepnee = K c=1(ENC)
IFD/ICC c=2 (MAC)
32 - 2048 bits,
depending on key l
negotiation ‘
mechanism HASH
Bytes 1 .. 16 of 20 bytes
(160 bits), interpreted as
big-endian byte output from
the hash function
3|4|5|6|7]|8 9 | 10|11 |12 [13|14|15|16| | 17|18 |19 |20
K. K, not used

Figure 1. Building TDES-channel keys from hash output (here ICC=SCDev)

The 16-byte channel key used for confidentiality protection is computed using HASH1. Ka et Kb form the 16-byte channel key.

The 16-byte channel key used for MAC computation is computed using HASH2. Ka et Kb form the 16-byte channel key.

Note: a TDES key is 16 bytes, among which one bit in each byte) is a parity bit. So there are only 112 bits really used by the TDES computation. Each byte shall be modified to adjust the parity bit correctly.

5.2.4.
Compute send sequence counter SSC

After successful device authentication, the send sequence counter SSC, which is an 8-bit value, is generated as follows:

· The starting value for the SSC is:

SSC = RND.SCDev (4 least significant bytes) || RND.HA (4 least significant bytes)

· The RND.SCDev and RND.HA are taken from the values of the device authentication protocol described in section 5.2.1.

Note: The send sequence counter SSC must be increased (+1) each time before a MAC is calculated, i.e. if the starting value is x, in the next command the value of SSC is x+1. The SSC value of the first response will then be x+2.

5.3 Secure Messaging Mode

The format of a plain text message is compliant with the definitions in ISO/IEC 7816-4 [2] when it is transmitted using secure messaging.

5.3.1.
CLA byte

The presence of Secure Messaging is indicated in b3 and b4 of the CLA byte of the command APDU. According to ISO/IEC 7816-4 [2], chapter 6.2.3.1, the bits b3 and b4 are set to 1 indicating that the command header is included in the message authentication.

5.3.2.
TLV coding of command and response message

If Secure Messaging is applied the command and response message shall be TLV coded according to ISO/IEC 7816-4 [2].

Tag
Meaning

‘81’
Plain value (to be protected by CC)

‘87’
Padding-content indicator byte (‘01’ for ISO-Padding) followed by the cryptogram

‘8E’
Cryptographic checksum (MAC)

‘97’
Le (to be protected by CC)

‘99’
Processing status (SW1-SW2, protected by MAC)

For cryptograms the padding indicator PI is always set to ‘01’, i.e. padding according to ISO/IEC 7816-4 [2] (‘80 ...00’).

Note: The plain value SM DOs are always set to Tag ‘81’, because the structure of the data in the data field is irrelevant for the SM view.

The cryptographic checksum shall integrate any secure messaging data object having an odd tag number.

5.3.3.
Treatment of SM-Errors

When the SCDev recognizes an SM error while interpreting a command, then the status bytes must be returned without SM. In ISO/IEC 7816-4 [2] the following status bytes are defined to indicate SM errors:

· ‘6987’: Expected SM data objects missing

· ‘6988’: SM data objects incorrect

Note: Further SM status bytes can occur in application specific contexts.

When the SCDev returns status bytes without SM DOs or with an erroneous SM DO the SCDev deletes the session keys. As a consequence the secure session is aborted.

5.3.4.
Padding for checksum calculation

The padding mechanism according to ISO/IEC 7816-4 [2] (‘80 ...00’) is applied.

5.3.5.
Message structure of Secure Messaging APDUs

For secure messaging the TDES algorithm shall be used.

5.3.5.1.
Cryptograms

Cryptograms are build with TDES in CBC-Mode with the Null vector as Initial Check Block.

A cryptogram (Tag = ‘87’x) is always followed by a cryptographic checksum with Tag = ‘8E’x. Encryption must be done first on the data, followed by the computation of the cryptographic checksum on the encrypted data. This order is in accordance with ISO/IEC 7816-4 [2] and has security implications as described in [5].
The command header shall be included into the cryptographic checksum.

The actual value of Lc will be modified to Lc’ after application of secure messaging. If required, an appropriate data object may optionally be included into the APDU data part in order to convey the original value of Lc.

The following figure 2 shows an example how an unprotected command APDU is protected using secure messaging with both integrity and confidentiality.

[image: image2.png]Unprotected command APDU

Cmd Hdr e Data Data | Data le
4 Bytes 8 bytes 8 bytes Ll 6 bytes

y
Cmd Har Data Data | Data Le
4 Bytes 8 bytes 8 bytes Ll i 6 bytes
Le
Build DO '87" Y
X X X X,
; Le
Add and pad command header. Build DO'97
87L 01 <encdata> .
Protected APDU
Cmd Har

87L 01 <encdata>

4 Bytes

Figure 2. Example for protecting an APDU command using secure messaging
with both integrity and confidentiality.

The following figure 3 shows an example how an unprotected response APDU is protected using secure messaging with both integrity and confidentiality.

[image: image3.png]Unprotected Response APDU

Data Data Data SW12
8 bytes 8 bytes nen 6 bytes | 2 bytes
Pad data
Data Data Data
8 bytes 8 bytes LR 6 bytes
Encrypt
Build DO '87"
y
X1 XZ d Xn

87 L 01 <encdata>

99

02

Swi12
2 bytes

Protected APDU

Swi12
2 bytes

Swi12
2 bytes

Build DO /99"

Swi12
2 bytes

Padding
'80 0.

Figure 3. Example for protecting an APDU response using secure messaging
with both integrity and confidentiality

If encryption is not required, the data object ‘87’ is replaced with a plain text data object ‘81’ that conveys the plain data (no padding) in its value field.

Note: Some existing applications transmit the DO ‘99’ (secured SW12) only if no data is present in the response. If the DO ‘99’ is not present in the response, the HA shall correctly process using the unprotected SW12 at the end of the response. An attacker, however, cannot remove DO ‘99’ from the response because the verification of the CC (MAC) would fail.

5.3.5.2.
Cryptographic Checksums

The data part is split in data blocks with 8-bytes length each. Figures 2 and 3 indicate the 8-byte subblocks with the notation Xi.

Cryptographic checksums are built according to ISO/IEC 7816-4 [2] (chapter 6.2.3.1) as follows (the basic mechanism is to build a MAC according ISO/IEC 9797-1 [3] with the block cipher DES, padding method 2, MAC algorithm 3, MAC length of at least four bytes):

· Initial stage: The initial check block Y0 is E[Ka] (SSC).

· Sequential Stage: The check blocks Y1, .. , Yn are calculated using Ka.

· Final Stage: The cryptographic checksum is calculated from the last check block Yn as follows: E[Ka](D[Kb](Yn)).

Here E[K]() means single encryption with DES and key K, respectively D[K]() decryption with DES. Figure 6 in Annex A illustrates this mechanism.

Annex A (normative) - Use of TDES

The following figure shows the application of keys in TDES (see also ISO 11568-2 [4]).

[image: image4.png]TDES Encryption

Key Ka Key Kb Key Ka
Data E[K](Data)
— DES > DES' |—» DES ——

TDES Decryption
Key Ka Key Kb Key Ka

! l l

E[K](Data) Data
—»{ DES' |—» DES —» DES'" |—>»

Figure 4. TDES Encryption/Decryption

[image: image5.png]Kﬁ TDES Kﬁ TDES 5& TDES
Kb Kb Kb
— — I
YO Y1 Yoa "
Final result
v = zero initialization vector
Xy 00X = plain text (message to encrypt) where each block
Xi is 64-bit long
YollY, = resulting cryptogram (encrypted message), where

each block Yi is 64-bit long

Figure 5 CBC TDES Encryption/Decryption

The encryption is started with the initial value which is set to a zero vector (8 bytes). The IV is xor-ed with the first 8 byte text block of the APDU. The result of this encryption is processed accordingly as shown in Figure 4.

The cryptographic checksum (CC) is calculated as retail MAC according to Figure 6.

[image: image6.png]X1 X4 X,
SSC
L e e
53 Encrypt 53 Encrypt 53 Encrypt Kﬁ Encrypt
| — | | N
YO Y1 Yoa

’ 52 Decrypt
CC = Cryptographic Checksum P

SSC = Send Sequence Counter ‘

Xi = Text Block

Yi = check block Kﬁ Encrypt

Figure 6. Retail MAC computation

The first step performs a single DES encryption with they key Ka on the send sequence counter. The 8-byte result Y0 is xor-ed with the first 8-byte block X1 from the actual data to be protected. Figure 2 and Figure 3 illustrate how the text blocks Xi are built from the actual APDU data. Then the xor-result is encrypted again with the key Ka.

The second to the last step continue up to the last encryption which results in Yn. Then the final TDES step is performed on Yn.

Annex B (informative): Major changes from previous versions

This annex is currently empty in the first version of this document. It will later on contain a description of the major changes between the several versions, so that an history can be easily be done.

Annex C (informative): Bibliography

[Editor’s note: anything ?]

History

Document history

V0.0.1
October 2004
First draft

V0.0.2
November 2004
Second draft

V0.1.0
November 2004
Third draft available for public comments

[image: image7.wmf]_1065009619.doc

