# Welcome to the World of Standards



World Class Standards

# **NFV TUTORIAL SESSION - Reliability**

NFV#12

Monday 26th October, 12:30 – 14:00

Marcus Schöller, REL WG Chair, NEC

# **REL001 Resiliency Requirements Report**

#### Published on 2015-01-07 containing

- Use case analysis for reliability and availability in a virtualized network environment
- Analysis of service availability levels
- Identification of requirements for maintaining network resiliency and service availability, the focus being additional requirements introduced by virtualization. The mechanisms to be considered include the following:
  - Network function migration within and across system boundaries
  - Failure detection and reporting at the various layers
  - Failure prediction, prevention, and remediation
  - Solving network availability issues caused by overload/call blocking conditions
- Engineering and deployment guidelines for maintaining network resiliency and ensuring service availability
- Faults and Challenges catalogue that impact NFV system resiliency



- Remediation that the service delivered is on an acceptable level
- Recovery that the service operates normally (what it was designed for) again



# **Further work items – overview**

REL003: Models and Features for E2E Reliability

- Study and develop reliability estimation model for NFV environments
- Assessment of system availability during various stages of VNF lifecycle
  - Scaling, Migration, Upgrade, ...
- REL004: Active Monitoring and Failure Detection
  - Develop methods for active monitoring of VNFs, NFVI and services
  - Reliability and Availability Testing of NFV deployments
- REL005: Quality Accountability Framework
  - Promotes the development of capabilities by which VNFs, NFV infrastructure and MANO can eventually enable rapid and reliable root cause analysis of service quality impairments, corrective action, and SLA management.

# **REL002: Scalable Architectures for Reliability Management**

# Objective

 Examines Cloud/Data Center Techniques for Reliability Management for delivery of High Availability

ETS

 Develops Scalable Methods for Managing Network Reliability in NFV Environment

State management during scaling and failure recovery operations:

- Dynamic scaling and recovery of control state
- Dynamic scaling and recovery of session state
- Dynamic scaling and recovery of server aggregate state
- Published September 2015

# **Scale-out with Migration Avoidance**

# Applicability

- Dynamic scaling of per-flow state
- Dynamic scaling of single server aggregate state

## Approach

- Splitting the original range:
- Flows in *F<sub>old</sub>(A)* gradually terminate: remove exception
- Number of exceptions below threshold



# **Lightweight Rollback Recovery**

## Applicability

- Failure of host system, e.g., hardware, driver, host OS
- Objectives
  - Correctness: Same state as prior to failure
  - Low overhead
  - Fast recovery
  - Generality
  - Passive Replicas

# Approaches

- Checkpointing
- Checkpointing with Buffering
- Checkpointing with Replay



ETS

# **Scalable Architecture Components**

#### Controller (Migration Avoidance):

- Supervision of dynamic scaling.
- Standalone device in support of this process or as part of e.g., the orchestrator.
  - a) Indication of overload condition and initiation of migration avoidance process
  - b) Determine location (server) of new VNF instance and instantiate it
  - c) Configure rules in software and hardware switches

### Overload Detector (Migration Avoidance):

• Active monitoring methodologies as described in RL004: "Active Monitoring and Fault Detection".

### Failure Detector (Lightweight Rollback Recovery):

 Combination of active monitoring techniques [i.7] and the architecture proposed by the OPNFV Doctor Project [i.8] which relies on NFVI analytics.

# **Future Work**



#### Multi-server Aggregate State Recovery

- Dynamic Scaling of cross-server aggregate state
- Recovery of cross-server aggregate state
- Gracefully phasing out old flows implemented in HW switch
  - An alternative process that invokes the use of the software switch to configure the final rules for old
- New methods/algorithms to reduce the checkpointing with buffering latency
- Checkpointing+replay process at the application layer
- Checkpointing/Logging as Passive Monitoring techniques in an NFV environment is a topic for further study

Welcome to the World of Standards



#### World Class Standards

# BACKUP

# **NFV REL – Hot Topic**

Early information correlation on different layers to avoid information floods

ETS

Correlation in a multi-vendor environment







| <u>Approach</u>              | <u>Correctness</u> | Latency Overhead     | <u>Generality</u>          |
|------------------------------|--------------------|----------------------|----------------------------|
| Checkpointing                | Not<br>guaranteed  | 0 microseconds       | Any legacy VNF binary      |
| Checkpointing with buffering | Guaranteed         | 10s of milliseconds* | Any legacy VNF binary      |
| Checkpointing with replay    | Guaranteed         | 10s of microseconds* | Any legacy VNF source code |

#### ETS **Evaluation: Migration Avoidance** Bandwidth (Gbps) Median Latency Latency (µs) Switch Bandwidth Time (s)

#### **Evaluation: Lightweight Recovery** ETS l The second s ..... 0.8 CDF of Packets 0.6 0.4 0.2 0 100000 100 1000 10000 10 Latency (us) Baseline Checkpoint + Replay Checkpoint + Buffer (Application-Layer) Checkpoint + Buffer (Virtualization Layer)