ETSI GS ZSM-016 0.0.9 (2024-02)
8
Release #
[bookmark: doctype][bookmark: pages12][bookmark: docnumber][bookmark: docversion]ETSI GS ZSM-016 0.0.9 (2024-02)

GROUP SPECIFICATION
[bookmark: doctitle]Zero Touch Network and Service Management (ZSM);
Intent-driven Closed Loops
<
[image: ETSI_BG_final_new]
Disclaimer: This DRAFT is a working document of ETSI ISG ZSM. It is provided for information only and is still under development within ETSI ISG ZSM. DRAFTS may be updated, deleted, replaced, or obsoleted by other documents at any time.

ETSI and its Members accept no liability for any further use/implementation of the present DRAFT.

Do not use as reference material.
Do not cite this document other than as "work in progress".

· ETSI ZSM public DRAFTS are available in: https://docbox.etsi.org/isg/zsm/open/Drafts
· Approved and PUBLISHED deliverables shall be obtained via the ETSI Standards search page at: http://www.etsi.org/standards-search

[bookmark: page2]Reference
DGS/ZSM-016_IntentDrvCL
Keywords
[bookmark: keywords]<keywords>

[bookmark: ETSIinfo]ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-préfecture de Grasse (06) N° 7803/88

Important notice
The present document can be downloaded from:
http://www.etsi.org/standards-search
The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
[bookmark: mailto]If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
Copyright Notification
No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

[bookmark: copyrightaddon]© ETSI yyyy.
[bookmark: tbcopyright]All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPPTM and LTETM are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and
of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Contents
Intellectual Property Rights	5
Foreword	5
Modal verbs terminology	5
1	Scope	6
2	References	6
2.1	Normative references	6
2.2	Informative references	6
3	Definition of terms, symbols and abbreviations	7
3.1	Terms	7
3.2	Symbols	7
3.3	Abbreviations	7
4	The concept of Intent-driven Closed Loops	8
4.1	Introduction	8
4.1.1	LCM and closed loops to fulfil intents in ZSM	8
4.2	Examples of use cases	9
4.2.1 	Intents for eMBB slices	9
4.2.1.1 	Description	9
4.2.1.2 	Use case details	9
4.2.2 	Intent-based closed loops in cross-domain management	10
5	Requirements for intent-driven Closed Loops	11
5.1	Requirements for IMEs	11
6	Procedures, Governance and Coordination of intent-driven Closed Loops	12
6.1	Procedures for intent-driven closed loops	12
6.1	Introduction	12
6.2	Governing an intent-driven closed loop	12
6.2.1	Smart Contracts	13
6.3	Coordination among intent-driven closed loops	14
6.3.2 	Utility information in conflict resolution	14
6.4	Intent management operations	15
6.4.1	Mandatory Operations	15
6.4.1.1	Create an intent	16
6.4.1.2	Read intent attributes	16
6.4.1.3	Update an intent	16
6.4.1.4	Delete an intent	16
6.4.2	Optional Operations	16
6.4.2.1	Introduction	16
6.4.2.2 	Judge	16
6.4.2.3	Best Intent	17
6.4.2.4 	Intent Feasibility Check	17
6.5	Intent lifecycle Management (LCM)	18
6.5.1 	Introduction	18
6.5.2 	Phases of the intent lifecycle	19
6.6 	Intent Management Entity registry	20
7	Information Model for intent-driven Closed Loops.	21
8	Additional Services and Capabilities	21
8.1	Management Services for Intents	21
8.1	Introduction	21
8.1	Intent-driven Closed Loop Governance Service	22
8.2	Intent-driven Closed Loop Information Reporting Service	22
8.1	Existing Services	22
8.2	Additional Services	22
Annex A (informative): Analysis of ETSI ZSM GS 009-1 and ETSI ZSM GS 002 (and other relevant ETSI ZSM specifications and ETSI ZSM reports).	24
Annex B (normative):	25
Annex (informative): Change History	26

[bookmark: _Toc455504134][bookmark: _Toc481503672][bookmark: _Toc482690121][bookmark: _Toc482690598][bookmark: _Toc482693294][bookmark: _Toc484176722][bookmark: _Toc484176745][bookmark: _Toc484176768][bookmark: _Toc487530204][bookmark: _Toc527985989][bookmark: _Toc19025618][bookmark: _Toc126401280][bookmark: _Toc159863238]Intellectual Property Rights
Essential patents
IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org).
Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.
Trademarks
The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.
[bookmark: _Toc455504135][bookmark: _Toc481503673][bookmark: _Toc482690122][bookmark: _Toc482690599][bookmark: _Toc482693295][bookmark: _Toc484176723][bookmark: _Toc484176746][bookmark: _Toc484176769][bookmark: _Toc487530205][bookmark: _Toc527985990][bookmark: _Toc19025619][bookmark: _Toc126401281][bookmark: _Toc159863239]Foreword
[bookmark: For_tbname]This Group Specification (GS) has been produced by ETSI Industry Specification Group Zero Touch Network and Service Management (ZSM).
[bookmark: _Toc455504136][bookmark: _Toc481503674][bookmark: _Toc482690123][bookmark: _Toc482690600][bookmark: _Toc482693296][bookmark: _Toc484176724][bookmark: _Toc484176747][bookmark: _Toc484176770][bookmark: _Toc487530206][bookmark: _Toc527985991][bookmark: _Toc19025620][bookmark: _Toc126401282][bookmark: _Toc159863240]Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).
"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

[bookmark: _Toc455504139][bookmark: _Toc481503677][bookmark: _Toc482690126][bookmark: _Toc482690603][bookmark: _Toc482693299][bookmark: _Toc484176727][bookmark: _Toc484176750][bookmark: _Toc484176773][bookmark: _Toc487530209][bookmark: _Toc527985994][bookmark: _Toc19025623][bookmark: _Toc126401283][bookmark: _Toc159863241]1	Scope
The work item will specify capabilities to support the combination of closed-loop automation with intents originating from ZSM consumers, focusing on intent-driven governance and coordination of closed loops. The scope of this work includes use cases, additional requirements related to intent-driven aspects of ZSM009-1, as well as procedures and information models. This work item will create a normative specification covering stages 1 and 2. It will also identify and describe additions to ETSI ZSM002 v1.1.1 and ETSI ZSM009-1 v1.1.1, as needed. Related work in ETSI, other SDOs and open-source projects will be considered and used where applicable.
Editor’s note: TODO: update scope description as document matures.

[bookmark: _Toc455504140][bookmark: _Toc481503678][bookmark: _Toc482690127][bookmark: _Toc482690604][bookmark: _Toc482693300][bookmark: _Toc484176728][bookmark: _Toc484176751][bookmark: _Toc484176774][bookmark: _Toc487530210][bookmark: _Toc527985995][bookmark: _Toc19025624][bookmark: _Toc126401284][bookmark: _Toc159863242]2	References
[bookmark: _Toc455504141][bookmark: _Toc481503679][bookmark: _Toc482690128][bookmark: _Toc482690605][bookmark: _Toc482693301][bookmark: _Toc484176729][bookmark: _Toc484176752][bookmark: _Toc484176775][bookmark: _Toc487530211][bookmark: _Toc527985996][bookmark: _Toc19025625][bookmark: _Toc126401285][bookmark: _Toc159863243]2.1	Normative references
References are either specific (identified by date of publication and/or edition number or version number) or nonspecific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
Referenced documents which are not found to be publicly available in the expected location might be found at https://docbox.etsi.org/Reference.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are necessary for the application of the present document.
[1]	ETSI GS ZSM 002: “Zero-touch network and Service Management (ZSM); Reference Architecture”.
[2]	ETSI GS ZSM 009-1: "Zero-touch network and Service Management (ZSM); Closed-Loop Automation; Part 1: Enablers "
[3]	ETSI TS 128 312 V17.3.1 (2023-04) " Intent driven management services for mobile networks (Release 17)".
[4]	ETSI GR ZSM 011 V1.1.1: "Zero-touch network and Service Management (ZSM); Intent-driven autonomous networks; Generic aspects".
[5]	ETSI GS PDL 011: “Permissioned Distributed Ledger (PDL); Specification of Requirements for Smart Contract’s Architecture and Security”
[6]	ETSI GR PDL 004: “Permissioned Distributed Ledger (PDL); Smart Contracts System Architecture and Functional Specification”

[bookmark: _Toc455504142][bookmark: _Toc481503680][bookmark: _Toc482690129][bookmark: _Toc482690606][bookmark: _Toc482693302][bookmark: _Toc484176730][bookmark: _Toc484176753][bookmark: _Toc484176776][bookmark: _Toc487530212][bookmark: _Toc527985997][bookmark: _Toc19025626][bookmark: _Toc126401286][bookmark: _Toc159863244]2.2	Informative references
References are either specific (identified by date of publication and/or edition number or version number) or nonspecific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[i.1]	<Standard Organization acronym> <document number><version number/date of publication>: "<Title>".
[i.2]	etc.
[bookmark: _Toc451532925][bookmark: _Toc527985998][bookmark: _Toc19025627][bookmark: _Toc126401287][bookmark: _Toc159863245][bookmark: _Hlk527028731]3	Definition of terms, symbols and abbreviations
[bookmark: _Toc451532926][bookmark: _Toc527985999][bookmark: _Toc19025628][bookmark: _Toc126401288][bookmark: _Toc159863246]3.1	Terms
For the purposes of the present document, the [following] terms [given in ... and the following] apply:
Editor’s note: TODO: where needed, provide definition of terms aligned with terminology used in industry and literature.
· intent owner: logical entity that originates intents and is responsible for managing intents lifecycle. An intent owner is an intent-driven MnS consumer for a specific intent.

· intent handler: logical entity that receives intents and handles them in the domain that is responsible for that intent’s fulfilment. An intent handler is an intent-driven MnS producer for a specific intent.

[bookmark: _Toc455504145][bookmark: _Toc481503683][bookmark: _Toc482690132][bookmark: _Toc482690609][bookmark: _Toc482693305][bookmark: _Toc484176733][bookmark: _Toc484176756][bookmark: _Toc484176779][bookmark: _Toc487530215][bookmark: _Toc527986000][bookmark: _Toc19025629][bookmark: _Toc126401289][bookmark: _Toc159863247]3.2	Symbols
[bookmark: _Hlk527022222]For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

[bookmark: _Toc455504146][bookmark: _Toc481503684][bookmark: _Toc482690133][bookmark: _Toc482690610][bookmark: _Toc482693306][bookmark: _Toc484176734][bookmark: _Toc484176757][bookmark: _Toc484176780][bookmark: _Toc487530216][bookmark: _Toc527986001][bookmark: _Toc19025630][bookmark: _Toc126401290][bookmark: _Toc159863248]3.3	Abbreviations
For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:
IdCLG		Intent-driven Closed Loop Governance

[bookmark: _Toc455504147][bookmark: _Toc481503685][bookmark: _Toc482690134][bookmark: _Toc482690611][bookmark: _Toc482693307][bookmark: _Toc484176735][bookmark: _Toc484176758][bookmark: _Toc484176781][bookmark: _Toc487530217][bookmark: _Toc527986002][bookmark: _Toc19025631][bookmark: _Toc126401291][bookmark: _Toc159863249]4	The concept of Intent-driven Closed Loops
[bookmark: _Toc126401292][bookmark: _Toc159863250]4.1	Introduction
Editor’s Note: This clause introduces the concept of intent-driven Closed Loops.
Intents may be used as an abstraction among autonomous entities that need to work towards a common goal (the term autonomous entities is defined in ETSI GR ZSM011 [4]). As defined in ETSI GR ZSM011 [4], intents define goals, requirements, and constraints in a declarative form. Thereby, intents guide an autonomous network regarding expectations from the customer on service or network behavior.
The E2E SMD and MDs may support intent-based services as mentioned in ETSI GS ZSM002, 4.2.10 [1]. MDs that support intent handling operations shall use an intent management entity [4] (IME) for all intent-related management. The IME shall act as an intent-driven MnS consumer and/or intent-driven MnS producer. The IME as an MnS producer manages the intent life cycle.
In this document, the features/capabilities of IME functionality are identified, discussed and specified.
Editor’s note: Different loops may be needed to satisfy all needs in this specification. The default is closed loops as defined in ZSM009-1, but other characteristics may require a variety of loops (both intent-based and non-intent-based). TODO: Investigate and incorporate more details into this document about other needed loops, if necessary.
IMEs shall leverage closed loops (CL) functionalities, e.g. specify a goal to a CL instance, as part of the intent life cycle management (LCM). CLs are key enablers for automating the configuration of networks and steering them towards the desired state, since a CL has the objective of achieving a specific goal by monitoring and regulating a set of managed entities.
The present document focuses on combining the two concepts (intents and CLs). Both concepts are essential to realizing intelligent and autonomous networks by enabling the usage of intent LCM and closed loops to fulfil intents within the scope of the ZSM framework and enable intents to interact with CLs.
The information exchanged between two IMEs is: 1) the intent requirements (defined by the IME in the role of intent-driven MnS consumer) communicated to another IME (in the role of intent-driven MnS producer), and 2) the intent fulfilment report sent back by the latter.
[bookmark: _Toc159863251]4.1.1	LCM and closed loops to fulfil intents in ZSM
The IME (in the role of an intent owner) is aware of the system state through measurements, analytics, and other information available. The IME shall execute actions using CLs to handle the network resources to fulfil the requirements expressed by the intents. These actions shall be performed through conventional management interfaces or intent-based interfaces. Regarding intent-based interfaces, the IME shall define its requirements through consecutive intents and interact with IMEs between different MDs using intent LCM operations. The IME is responsible for managing such CLs, including their LCM.
Fig. 1 shows an example of using intent LCM for communication between different MDs within a management system based on the ZSM framework. The interaction starts with the E2E service MD receiving an intent from the ZSM framework consumer. Based on fulfilment purposes, the E2E service MD may decompose the intent into multiple intents and send these decomposed intents to different MDs (RAN, Core, Transport, etc.). By doing that, the E2E service MD shall assume the following roles: 1) intent handler of the intent originated at the ZSM consumer, and 2) intent owner of the decomposed intents sent downwards to the specific MDs. After receiving the intent, each MD may use closed-loop automation mechanisms to fulfill it and report the fulfilment status to their corresponding intent-driven MnS consumers, thus closing the interaction loops.
[image:]
Fig. 1 – Intent management entities interactions among different management domains in the ZSM architecture.
The implementation of IMEs and the use of closed loops may be realized in different ways. However, a general challenge is how the IMEs shall interact with the specific logic within a management domain, in order to translate an intent, expressing expectations, into detailed technical configurations.
[bookmark: _Toc126401293][bookmark: _Toc159863252]4.2	Examples of use cases
Editor’s Note: This clause discusses intent-driven closed loop use cases.
[bookmark: _Toc159863253]4.2.1 	Intents for eMBB slices
[bookmark: _Toc159863254]4.2.1.1 	Description
In the era of 5G and “5G-Advanced”, which 3GPP started to study and specify from Release 18, it is expected to enhance 5G specific capabilities such as eMBB, URLLC and mIoT. In regards to eMBB utilizing 5G network, CSPs can provide more high-speed communication environment not only for downlink communications, but also for uplink ones. This enhancement may make it easier for CSPs to provide eMBB network slices with customers more widely than current 5G.

In those situations, it is also expected that CSPs experience unknown anomaly status in the operator's network due to e.g., the drastic increase of traffic. To avoid failing to meet customers’ and operator’s expectations for eMBB service, i.e. “intents”, intent-driven closed loops can help CSPs detect those incidents promptly and identify the root cause and appropriate actions to be taken.
[bookmark: _Toc159863255]4.2.1.2 	Use case details
This use case can be done by the following procedure and closed-loop is adopted with intent-based:
[Pre-condition 1] A CSP is providing broadband network services to end users utilizing eMBB network slice(s).
[Pre-condition 2] SLA between a CSP and customers may be transformed as intents within a ZSM framework. In addition, CSP may give intent handler(s) their operational requirements (e.g., wants to reduce operational cost as much as possible without increasing power or to reduce the virtual servers when the number of active users are decreasing, or wants to increase customers’ satisfaction by replying to their claims as soon as possible, etc.) as intents.
1. While monitoring metrics (e.g., traffic data or QoE on users), E2E Service MD detects violation of SLA. [Monitoring stage of a CL]
2. By conducting intent-based analysis, an anomaly status such as a congestion in a MD is identified as a root cause of the violation. [Analysis stage of a CL]
3. Based on the analysis, some candidates of resolution (e.g., scaling out of resources, switching the route of users’ traffic to more efficient one, etc,) are derived. [Analysis stage of a CL]
4. An intent handler within the MD decides which action should be taken to meet the intent most properly. [Decision stage of a CL]
5. Adopted execution is done. [Execution stage of a CL]
6. Upon the action is executed, the status of fulfilment of the intent is evaluated as defined in Clause 6.2.1.3.5 of ETSI TS 128 312 [3].

Editor’s note: Requirements related to this use case is expected to be provided in Clause 5..

[bookmark: _Toc159863256]4.2.2 	Intent-based closed loops in cross-domain management
This use case describes autonomous network operations based on the ZSM architecture involving an end-to-end management domain and different management domains. Operations begin with an intent expressing abstract business requirements.
NOTE: For illustration purpose, throughout this use case, we consider the delivery of a cost-effective video service to a group of users. However, this use case is generic enough to be applicable to other types of services and other types of user requirements
The business-level intent specifies the type of video service, high-level preferences, such as cost-effectiveness, and the user group as the context. This business-level intent may be received by a BSS or any other system that is outside the scope of ETSI ZSM. This business-level system would translate the intent into a service-level intent that can be forwarded to an intent management entity (IME) that is under the scope of ETSI ZSM and is running at E2E MD level. This translation would involve some contextualization by interpreting and transforming the abstract business requirements into service-specific requirements and goals.
Editor´s note: The definition of IME should be added in an introductory clause.
The ETSI ZSM framework allows any external authorized ZSM consumer to discover available IMEs and forward an intent to them. An IME in the E2E MD receives the service-level intent, and its primary objective is to deliver a service instance that satisfies that intent. In the illustrative example, a key aspect of this delivery process is the best distribution of application and network components across the network and cloud infrastructure.
There are many possible ways of processing, fulfilling, and assuring the received intent; one common mechanism is with closed loops. The number of closed loops and their types employed by the IME is implementation-specific. One example of such intent-driven closed loop is described in ETSI ZSM009-3 clause 6.5.
During the process of finding a solution to fulfil the service intent, the closed loops employed by the IME (as the MnS producer) at the E2E MD will break down the requirements on the service into domain-level requirements per network component that is necessary to be deployed. For example, a network function would be required at a particular location with latency and bandwidth goals. This would help deliver the required user experience.
Executing the solution at the service level typically involves a service orchestrator that coordinates the execution of distributed actions. Some of these actions may involve sending decomposed intents to individual MDs that are intent-aware and have a domain-specific IME. The ETSI ZSM framework allows IMEs at different MDs (including the E2E MD) to exchange intents, that are related to customer intents.

In the example, we will focus on the intent-based management of a cloud-native function. The closed loops dealing with the service intent determine a solution that is primarily concerned with identifying all deployment functions and allocating to a data center. Deployment function candidates are still technology-agnostic, but we assume that there is a direct mapping from each function to some deployment artifact that can be understood by the orchestrator or virtualization manager of the management domain.
Ultimately, the decomposition of the business-level intent provides a service instance design that is broken down into locations (such as data centers and transport paths), deployment artifacts (represented by Helm diagrams, for example), and initial resource allocation in terms of bandwidth, QoS class, storage, and so on.
Once the service is instantiated according to the preferred solution, information becomes available that enables service monitoring. This means that the intent-based closed loop(s) that was initially aiming at service fulfilment will be transformed into (or replaced with) specific closed loops with assurance goals that will be responsible to take corrective action when the intent requirements do not match the measured system state.

[bookmark: _Toc126401294][bookmark: _Toc159863257]5	Requirements for intent-driven Closed Loops
Editor’s Note: This clause defines the requirements relevant to intent-driven Closed Loops within the ZSM framework architecture.
INT-Req-1 – The ETSI ZSM framework shall expose intent-driven management services to authorized ZSM consumers.
INT-Req-2 - The ETSI ZSM framework shall provide discoverability of the intent-driven management capabilities offered to authorized ZSM consumers.
INT-Req-3 - The ETSI ZSM framework shall provide the registration service for intent management entities to register their intent management capabilities.
NOTE: Examples of intent management capabilities are, among others, the scope of management, the supported intent modelling, intent-based interface operations.
INT-Req-4 – The ETSI ZSM framework shall support the capabilities to process, fulfil and assure intents.
INT-Req5 - The ETSI ZSM framework shall support the capabilities to allow ZSM consumers to state intents as a set of expectations, including requirements, goals, and constraints.
The following requirements need to be fulfilled by the ZSM framework to handle the conflicts in intent driven closed loops:
Con-Req-1: The intent owner should be able to send to the intent handler its utility information using intent.
Con-Req-2: The intent handler shall be able to report to the intent owner about possible intent degradation.
Con-Req-3: Intent handler should be able to register its capability to support for utility through registration and discovery MnS (as defined in GS ZSM 002 [1])
[bookmark: _Toc159863258]5.1	Requirements for IMEs
[bookmark: _Hlk141887462]INT-Req-6 – The ETSI ZSM framework shall support the capabilities of IMEs as an intent owner within (E2E) MDs to identify the intent issue based on fulfilment information of intents.
NOTE: Examples of the intent issue may be violation of SLA, intent conflict, etc.
INT-Req-7 – The ETSI ZSM framework shall support the capabilities of IMEs as an intent handler within (E2E) MDs to evaluate the status of fulfilment of intents when IMEs as an intent owner providing the intent expectations including requirements, goals and contexts.

[bookmark: _Toc126401295][bookmark: _Toc159863259]6	Procedures, Governance and Coordination of intent-driven Closed Loops
[bookmark: _Toc126401296][bookmark: _Toc159863260]6.1	Procedures for intent-driven closed loops
Editor’s Note: This clause defines the procedures for intent-driven Closed Loops.
[bookmark: _Toc159863261]6.1	Introduction
Intent-driven Closed Loop Governance (IdCLG) inherits all capabilities provided in ETSI GS ZSM 009-1 [2] clause 8.1.
The intent-driven Closed Loop Governance (IdCLG) capabilities may include:
· Management of the Closed Loops lifecycle using intents, e.g., to provide the capability for an IME to manage CLs using the intent-related information extracted:
· From intents.
· During the intent LCM operations.
· Converting the information collected from the CLs to intent report format.
To make use of the intent-driven Closed Loop Governance, an IME shall have the capability to deal with intent operations (see clause 6.3).

[bookmark: _Toc126401297][bookmark: _Toc159863262]6.2	Governing an intent-driven closed loop
Editor’s Note: This clause defines the governance for intent-driven closed loops.
As defined in ZSM009-1 [2], CL Governance provides the capabilities to manage and configure the CL models and the life cycle of CLs. Besides, it also provides capabilities to retrieve information from the CL status and performance. Regarding IdCLs, for each intent received, the intent handler may use existing CL instances or (in case a new service is needed) use CL models to instantiate a new CL to decide the most appropriate actions to fulfil the intent.
Intent-driven CLs may exist in any of the management domains of the ZSM architecture. A management domain that supports intent handling operations shall use IdCLG services (see clauses 8.1 and 8.2).
After receiving the intent(s) from an intent owner, the intent handler may take this intent-related information to perform CL lifecycle management operations (e.g., the CL LCM operations defined in ETSI GS ZSM 009-1 [2]) on one or more CLs to achieve the intent targets. These operations may involve assigning their goal(s) for intent fulfilment besides instantiating new CL instances. After manipulation of the intent-related information, the intent handler may use CL models from CL Governance MnS to set the goal(s) on existing (or new) CLs. The ZSM009-1 [2] specifies that goal(s) shall be stated in declarative or imperative forms; the former in a level of abstraction closer to intents and the latter with measurable service levels specifications. The conversion process may involve converting intents into measurable KPIs to be monitored by the CL instance.
As defined in ETSI GS ZSM009-1 clause 5.2, the CL stages should be able to report their outcomes to authorized entities. This way, reporting information shall be obtained using CL status information and (or) performance information capabilities from the CL Governance MnS. This obtained information shall be converted into intent reports before being sent back to the intent owner that originated the intent(s). An example of this collected information from the CL is the health status of the CL.
After a CL is associated with an intent (or a set of intents), the intent handler needs to report the fulfillment status and progress to the entity that originated that intent(s). Figure 6.1-1 shows how intents may interact with CLs using the CL Governance MnS extended capabilities, e.g., using the IdCLG.

[image:]
Fig. 6.1-1 – Intent-driven Closed Loop Governance interaction.

[bookmark: _Toc159863263]6.2.1	Smart Contracts
Distributed Ledger (DL) offer the ability to store any kind of data as a consensus of replicated, shared, and synchronized digital records distributed across multiple sites and domains, without depending on any central administrator. Together with their properties regarding immutability (and therefore non-repudiation) and transparency (implying multi-party verifiability), they open a wide range of applications in what relates to the verification of the fulfillment of service agreements of any nature.
In this context, smart contracts appear as an interesting solution for the formalization and automation of governance mechanisms. A smart contract is a computer program stored in a DL system, wherein the outcome of any execution of the program is recorded on the DL [6]. Smart contracts are executable code that lives on a DL and inherit their properties such as transparency and immutability. They are also auto-executable, which means once recorded, a smart contract can perform tasks without human intervention. Indeed, a constructor initializes them in the first place; however, subsequent clauses are executed automatically with pre-programmed conditions. Smart contract specifications (GS-PDL 11 [5]) require the adhesion to the lifecycle of smart contract proposed in ETSI GR PDL 004 [6] (see Fig. 6.2.1-1).
[image:]
Fig. 6.2.1-1 – Lifecycle of a smart contract (source: ETSI GR PDL 004 [5]).
The use of smart contract helps in building formal and traceable mechanisms for intent-driven closed loop governance. One the one hand, intent declaration is formalized through the smart contract code (conditions or trigger, and actions or code), i.e., the intent language is captured in the smart contract itself. On the other hand, the formalized intent is used to create and supervise the required closed loops over the applicable services.
The application of smart contracts to intent-driven closed loop governance is performed as follows:
1. The intent owner discovers available intent handlers. The owner may want to know the capabilities supported by each intent handler, including information on syntax rules for intent specification.
2. The intent owner can use this information to select the proper intent handler to express the intent.
3. The intent owner formulates the intent according to the syntax rules of selected intent handler and sends the intent provisioning request to this intent handler.
4. Upon receiving such a request, the intent handler proceeds with intent feasibility check.
a. If feasible, the intent handler signs the associated smart contract, together with the intent owner, and registers it in the DL. Once signed and registered, the smart contract will provide a transparent and immutable representation of the intent.
b. Otherwise, an intent negotiation procedure can start between the intent owner and intent handler.
Editor’s note: the intent negotiation procedure will be specified in this document. Once specified in the corresponding section, a pointer to that section will be referred in step 4.

5. The intent handler fulfils the intent using one or more CL instances and uses the smart contract to govern the LCM of those instances. This governance relies on the triggers/actions which are captured in the smart contract.
NOTE: In a service provider-customer relationship, the smart contract is an auto-executable code which includes the necessary triggers and actions.

[bookmark: _Toc126401299][bookmark: _Toc159863264]6.3	Coordination among intent-driven closed loops
[bookmark: _Toc159863265]6.3.2 	Utility information in conflict resolution
During the operation phase of a given set of intents, the associated closed loop may find conflicting actions while trying to fulfill the intents, as described in clause 6.3.1. This indicates that the intent handler has to find solutions that may prioritize one intent over the other, which means, in this case, degrading the other conflicting intent. The degradation of the intents would only occur if the handler does not have the means to satisfy all intents at the same time. Then, it may prioritize one intent maximizing the intent handler’s global utility (the intent handler global utility is the aggregation of all intent utilities scores into one). In any case, the degradation would be communicated to the intent owners to allow them to act accordingly. The utility is provided by an owner and processed by a handler. The use of the utility with intents is optional.

The intent owner may communicate its utility to the intent handler, by adding the utility description to its IME capability profile as defined in Section 6.6, or it may also add the utility information to the intent object sent to the intent handler during negotiation phase. This information helps the intent handler to interpret the provided utility information correctly and allows an intent handler to perform more informed decisions during intent fulfilment and resolve conflicts by selecting the strategy that will maximize its utility. It may also be necessary to the intent handler to perform normalization of the utilities in case the utilities are in different data units or scales (e.g., one utility ranging from 1-100 ms and another utility ranging from 1000-10000 kbps). The following example shows the theoretical steps of using utility information in conflict resolution:

1. During the distribution phase, two intent owners (owner A and owner B) set intents (intent A and intent B) for an intent handler with specific requirements on KPIs, each requirement has an associated utility that indicates how well the requirement is fulfilled, as shown in Figure 6.3.2-1. A higher utility value of the respective solution implies that the intent is better fulfilled. The intent handler wants to maximize the handler’s utility, that is, for example, internally calculated as a sum of all the intent’s utility or by means of other functions. A desired feature is the ability to balance the requirements from different intents by using the handler’s global utility as a decision threshold.
2. During the operation phase, the intent handler propose actions that may conflict with intents A and B.
3. The intent handler may prioritize the fulfillment of intent A given that if the KPI_A goes above x, the utility drops very quickly, whereas the utility drops only gradually when KPI_B goes above y. As a result, if there are no actions to keep the values below x and y, the intent handler may solve the conflict by allowing more degradation of intent B compared to intent A.
4. The intent handler will not provide any details of the conflicts and it will also not ask any explicit guidance to the intent owner (except for the cases where the JUDGE operation is applied) to solve the conflict, instead, it will only communicates to the intent owner B the degradation of its intent so the intent owner may take action accordingly.

[image:]
Figure 6.3.2-1 - Two examples of intent utility functions for different intents.

[bookmark: _Toc159863266]6.4	Intent management operations
[bookmark: _Toc159863267]6.4.1	Mandatory Operations
The following operations shall be used to enable intent object instances lifecycle management and intent-driven Closed Loops.

The operations below are listed as mandatory and shall be supported by all intent management entities.

Editor’s Note: Add more intent capabilities in this clause (optional and mandatory).
[bookmark: _Toc159863268]6.4.1.1	Create an intent
This operation shall be used for the creation of an intent object by an intent owner and to send this intent to an intent handler.

The create intent operation may result in the creation of the intent object at the intent handler, if the intent received is accepted, or it may result in the rejection of the new intent; in this case, the intent object is not created at the intent handler.
[bookmark: _Toc159863269]6.4.1.2	Read intent attributes
This operation shall be used for reading the intent related information by an intent owner.

This operation shall also be used by any authorized entity acting as an intent owner.

The desired information could be requested with this operation. The desired information could be the intent content (i.e., its expectations), or an intent report with expectations fulfilment status related to that given intent object.
[bookmark: _Toc159863270]6.4.1.3	Update an intent
This operation shall be used for the modification of an intent object by an authorized intent owner. The only intent management entity that is allowed to use this operation is the intent owner (the one that created the intent).
[bookmark: _Toc159863271]6.4.1.4	Delete an intent
This operation shall be used for the removal of an intent object by an authorized intent owner. That means, after the successful execution of this operation the intent will no longer exist.

The only authorized entity that is allowed to use this operation is the intent owner (the one that created the intent).
6.4.2 [bookmark: _Toc159863272]Optional Operations

[bookmark: _Toc120181784][bookmark: _Toc159863273]6.4.2.1	Introduction
An important aspect of intent-driven closed loop-based systems is their support of automation of intent interactions. Such support is facilitated by the declarative and abstracted nature of intent information objects, in that intent owner is not required to know anything about the intent handler underlying system in order to formulate intents. However, further intent interface operations may be created to support the negotiation – and the potential automation of negotiation - of intent-based service terms between both intent owner and handler. For example, on receiving an intent request, an intent handler may not be able to fulfil it, or to fulfil it entirely, whereupon the intent handler might propose alternative intents for the intent owner to choose from. Or the intent owner may wish to discover about a service performance an intent handler may be able to deliver, before formulating specific service intents. The following optional interface operations help to create such operational richness in automatable intent-driven closed loops system negotiation.
[bookmark: _Toc120181785][bookmark: _Toc159863274]6.4.2.2 	Judge
In some cases, the intent handler may find different solutions that are able to fulfil the intent expectations; one of the alternatives may be better or more optimized in one aspect and the other alternative may be better in another aspect. In other cases, the intent handler may not be able to find any solution that is capable to fulfil all the intent expectations but may have some alternatives that are able to get better results for some of the expectations. An example is an intent with two expectations: one expectation is latency < 10ms, and the second one throughput > 1gbps. However, the intent handler only has actions that fulfill only one of them.

In both situations described above, while the intent handler has autonomy to decide the best approach to be taken, i.e., which action to utilize, it may be beneficial that the intent handler and intent owner engage in a collaborative evaluation so that the intent owner may improve the final intent result. The collaborative evaluation allows the intent handler to ask the intent owner to decide which out of many possible outcomes is preferred from intent owner perspective.
The intent owner sends the intent to the intent handler. After accepting the intent, the intent handler starts the Judge operation by asking the intent owner for the judgement on a set of results. In this procedure multiple intent reports are sent, each of them represents the expected result for an action.
It is important to emphasize that the intent handler is not sending to the intent owner the details and the actions that are expected to be taken in each action alternative, since the intent owner is not capable to understand these details. The intent handler would rather use intent reports to communicate the expected results of these actions. This means the intent owner can judge based on effect of the actions rather than how it was done.
The invocation of Judge operation initiated by the intent handler is followed by the indication of the order of the preferred solution alternatives. If a solution alternative is not desired by the intent owner (i.e., should be ignored by the intent handler), it is not included in the response. The intent owner can always decide not to consider any of the intent handler alternatives. In case the intent owner cannot respond to a Judge operation for any reason, the intent handler is supposed to decide on its own what is the best alternative to be considered, following the principle that the intent handler has autonomy to decide the most appropriate actions to fulfil the intents.
The owner may use the identifier of each presented outcome report to send a list of them back to the intent handler. The list refers to reported results that would be further analyzed and selected by the owner. The list is sorted with the most preferred outcome first. After receiving the preferred list, the intent handler takes the appropriated action based on the preferences and reports back the results to the intent owner.
[bookmark: _Toc159863275]6.4.2.3	Best Intent
In some cases, the intent owner may be interested to know what is the best performance that the intent handler is able to deliver for a given set of requirements. In this situation, an intent owner creates an intent where one or multiple expectations are marked as for the evaluation for the best possible outcomes that could be achieved by the intent handler.
After accepting the Best intent MnS capability, at the end of evaluation, the intent handler sends back a response to the Best MnS capability in an intent report format where the expectations that were marked for evaluation indicate the best performance levels that currently can be fulfilled by the intent handler. It is assumed that any other constraints (e.g. cost budget, business relationship between owner and handler, etc.) specified as part of the intent being evaluated are taken into account in the evaluation process. After the intent handler reply, the intent owner can delete the Best intent, receive the confirmation and send another intent based on the evaluations provided by the intent handler. In case the outcomes provided by the intent handler is not the best option for the intent owner, it may send another Best intent changing the configuration.
Editor´s note: what should be done with the Best intent after reporting is done is FFS
It is also possible to ask for the best possible proposal for already accepted intent. This can be sensible if the intent handler fails to fulfil the intent as is and the intent owner wants to know what is the best performance that the intent handler can deliver.

[bookmark: _Toc159863276]6.4.2.4 	Intent Feasibility Check
In specific cases, the intent owner may want to verify what expectations are actually feasible to be fulfilled by an intent handler or what outcomes can be provided by the intent handler [4].
This is an MnS capability that may be used before the intent is actually considered by the intent handler as a set of requirements. This means that an intent handler is not expected to fulfil the given intent, but rather just provide the reports in case that intent would be fulfilled.
Also, any intent sent using this MnS capability is actively life cycle managed by the intent owner, e.g., it is also possible to UPDATE the feasibility check intent to explore different options (alternative intents with different expectations) to find out how the intent handler and the its underlying system would react. The intent handler has to provide reports with the outcomes for those alternative intents.

The intent using this MnS capability could also be removed using the DELETE operation, as well as the intent created using the CREATE operation,

This MnS capability is part of the investigation phase, and it is initiated by the intent owner. Based on its needs, the intent owner formulates an intent to get an estimation about the expected outcomes in case that this intent would be used. The feasibility check intent is sent to an intent handler using the Intent Feasibility Check MnS capability. The intent handler would start sending reports representing its estimate of handling results if the intent would be created and handled.
The intent handler would continue sending reports until the probing intent is removed by the owner. It is also possible to modify the feasibility check intent in order to test multiple intent configurations (i.e., an intent with different expectations) or in cases where the expected outcomes do not meet (or partially meet) the intent owner requirements. In this case, a new negotiation of this feasibility check intent is required.
Ultimately the intent owner would proceed by removing the feasibility check intent. This means, based on the feasibility check results it can decide which intent configuration to use.

[bookmark: _Toc159863277]6.5	Intent lifecycle Management (LCM)
[bookmark: _Toc120181769][bookmark: _Toc159863278]6.5.1 	Introduction
Intents are used for interactions between two distinct intent management entities. The lifecycle management of a given intent is performed by the intent owner. As described in clause 4.1.1 an IME in a specific MD may assume two distinct roles: 1) intent handler (intent-driven MnS producer), and 2) intent owner (intent-driven MnS consumer).
The intent owner is the only entity allowed to create, modify or remove the intent.
Editor’s note: add explanation about intent owner being replaced by an authorized entity. Make a small intro here and add more details further on.

The intent handler plays an active role in the lifecycle of intents mainly during the negotiation and formal definition of the intent after an intent is defined and created (intent fulfillment stage). An IME becomes the intent handler of an intent when it receives that particular intent from an intent owner. An intent handler has to consider the requirements, goals and constraints specified in the intent when operating the domain and infrastructure. It is responsibility of the intent handler to keep the intent owner updated about the intent fulfillment status and progress by sending intent reports.

An intent handler can reject an intent if, e.g., it is not able to understand or not able to fulfil it. Thus, in order to avoid rejection, the intent owner can request intent feasibility or negotiate it for the best option.
An IME may assume one the two roles (handler or owner) for each intent and the role will determine the responsibilities and tasks in the lifecycle management of the intents. The relationships between an intent owner and an intent handler is one-to-one, as shown in Fig. 6.5.1-1. There are never multiple intent owners for a given intent created at the intent handler, and an intent is never created at multiple intent handlers. Instead, an intent owner may generate multiple (and different) intents to address the requirements for each affected domain and send these to different intent handlers.

[image:]

Figure 6.5.1-1: Relationship between intent owner and intent handler.

[bookmark: _Toc94086742][bookmark: _Toc98337944][bookmark: _Toc120181770][bookmark: _Toc159863279]6.5.2 	Phases of the intent lifecycle
The intent LCM consists of different phases as shown in Figure 6.5.2-1.

[image:]
Figure 6.5.2-1: Intent LCM phases.
The lifecycle of the intent begins before the intents is accepted at the intent handler, given that the intent is originated at the intent owner and there are steps that need to be performed before creating the intent at the intent handler. The intent handler/consumer responsibilities are different at each phase of the intents’ lifecycle, which are detailed below.

Detection:
In the detection phase an intent owner identifies if there is a need to define new or to change/remove existing intents to set and/or change requirements, goals, and constraints.
In the detection phase the intent owner reacts to changes in its own internal goals or to changes in the fulfilment of the intents that were sent to an intent handler. The intent reports coming from the intent handler may serve as information sources for the detection phase.
Investigation:

In the investigation phase an intent owner, in collaboration with the intent handler, determines if the intent is feasible.
This has two aspects: first, the intent owner needs to find the intent handler that have the right domain responsibilities and support the intent information the intent owner wants to define. Intent handler capability management and detection would be used for this process.
The other aspect of investigation would be to find out if the wanted intent is realistic. This means, if the intent handler would be able to successfully reach the wanted goals and meet the requirements. This depends on the current resource situation and state of the system and can vary over time. Typically, the feasibility of intent is done through a guided negotiation process between the intent handler and intent owner (using optional operations on the intent interface, as defined in clause 6.4.2). The intent owner can explore what the intent handler result of a wanted intent would be, what would be the best result the intent handler can achieve, or what would be the most challenging requirements, the aspiring intent handler can offer to fulfil.
Definition:

At the end of the investigation phase the intent owner knows what intents are feasible and which intents intent handlers need to be involved. By combining this information with the needs that were identified in detection, the intent owner can now define all required intents.
In the definition phase the intent owner specifies and creates the required intents that need to be sent to one or more intent handlers.

Distribution:
In this phase the intent owner distributes the defined intents. It first identifies the right target intent handler for each individual intent. This involves an intent handler registry providing information about intent handling domain scope of available intent handlers. The registry information also contains the intent handler capabilities with respect to the intent extensions and intent information models it implements and therefore supports to be used in the intent definition. Further details about the IME registration process can be found in Section 6.6.
For modified intent the used intent handler does not change, but its capabilities with respect to supported information elements need to be considered to avoid rejection of the intent.
If a suitable intent handler is discovered, the intent owner informs it about changes (using the intent interface). This includes setting of new intent, modification of existing intent or removal of intent that is not needed anymore. A targeted intent handler participates according to the intent interface operations and its reporting obligations.
Operation:
The intent handler operates on its own intent handling domain according to the requirements, goals and constraints set by the received and accepted intents. The operation phase involves the intent handler performing its own analysis, decision-making, and actuation trying to fulfill the intents and keeping them fulfilled.
The intent handler is reporting on the state of handling and fulfilment success to the intent owner. This reporting is done individually for each distinct intent. The reporting closes the lifecycle loop as it enables the detection phase in the intent owner.

The intent handler cannot change the intent. It can only report on its success to meet the requirements to the intent owner. However, for multiple different intents a single intent management function can assume the role of intent owner for some and the role of intent handler for others.
The intent owner is responsible for detection and deletion of any loops that the chain of intents may form, including loops that may be created through interactions between several instantiations of the ZSM framework.
[bookmark: _Toc159863280]6.6 	Intent Management Entity registry
The intent handlers in the management domains may need to be discovered by the intent owners before the intents are exchanged with the operations defined in clause 6.4.
An intent owner may query multiple IMEs to decide which one should be the best intent handler for a given intent. The decision may be based, e.g., on the supported intent models, on the supported intent interface operations, or any other decision criteria.
Every IME has a set of capabilities, which are formally expressed by an IME profile. An IME profile may have the information below:
· IME interface endpoint.
· Management domain.
· Supported intent roles.
· Supported intent optional operations (e.g., Judge).
· Supported intent models.

The IME profiles may be accessed by all authorized IMEs that are interested in such information. Such information may be managed by the different (E2E) management domain's data services, or by the cross-domain data services in ZSM architecture. The IME profiles may be kept in logical IME registry(ies) that are used for registration and discovery of IMEs (as defined in ETSI GS ZSM002 [1]).
The IMEs may decide to which IME registry(ies) it will register its profile and what information is contained in its profile. It is possible that IMEs only register its profiles within a given (set of) management domain(s) to limit its discoverability. It is also possible that only limited information is exposed in its registered profile, e.g. only IME interface endpoint and management domain. This allows flexibility for the IMEs to decide about the right level of capabilities exposure.
The registration capability of the IME sends the capability profiles to the IME registry, publishing the existence of an IME along with its scope of responsibility and capabilities. The discovery capability of the IME permits searches in the publicly available capability profile of IMEs. An IME discovery is an essential step for intent owners deciding if there are intent handlers with the right scope of responsibilities capable of handle the owner’s needs, and what an intent owner can express with this intent.

[bookmark: _Toc126401301][bookmark: _Toc159863281]7	Information Model for intent-driven Closed Loops.
Editor’s Note: This clause defines the information models for intent-driven Closed Loops.

[bookmark: _Toc126401302][bookmark: _Toc159863282]8	Additional Services and Capabilities
[bookmark: _Toc159863283][bookmark: _Toc126401303]8.1	Management Services for Intents
[bookmark: _Toc74555881][bookmark: _Toc159863284]8.1	Introduction
This subclause specifies ZSM management services related to intent management. This subclause contains the descriptions and the service definition tables of management services (Table 8.1.1-1) which are classified as intent management related services.
Table 8.1.1-1: Intent management service
	Service name
	Intent management service

	Service capabilities

	Manage intents (M)
	Manage (create, read, update, delete) intent objects (as specified in Clause 6.4) in the respective management domain(s).

	Judge (O)
	Request the intent owner to judge and rank (according to the intent owner preference) the solutions provided by an intent handler, as specified in clause 6.4.2.2.

	Best (O)
	Request the best results for a given intent expectation, as specified in clause 6.4.2.4.

	Intent feasibility check (O)
	Explore what intent expectations are feasible by the intent handler, as specified in clause ZZ.

	Register IME profile (O)
	This capability is used by the IME to register its profile, as specified in clause 6.4.2.3.

	Discover IME profile (O)
	This capability is used by the IME to request IME profiles, as specified in clause 6.4.2.3.

[bookmark: _Toc159863285]8.1	Intent-driven Closed Loop Governance Service
This clause specifies additions to ZSM management service related to Closed Loop Governance (the target service is defined in ETSI GS ZSM009-1, subclause 9.2.2) to support intent-driven operations. The extension of the CLG to support intent-based information manipulation service is described in Table 8.1-1.
Table 8.1-1: Service definition extension
	Service name
	Intent-driven Closed Loop Governance (IdCLG) service

	External visibility
	OPTIONAL

	Service capabilities

	Manipulate intent information (M)
	Convert the intent-related information to CL LCM operations.

[bookmark: _Toc159863286]8.2	Intent-driven Closed Loop Information Reporting Service
The IdCL information reporting service allows providing current or past information of one or more Intent-driven Closed Loops or Intent-driven Closed Loop instances. The extension of the Closed Loop information reporting service to support intent report format is described in Table 8.2-1.
Table 8.2-1: Service definition extension
	Service name
	Intent-driven Closed loop information reporting service

	External visibility
	OPTIONAL

	Service capabilities

	Convert to intent report format (M)
	Convert the CL status information to intent report format.

Editor’s Note: Add more intent capabilities in the table 8.1.1-1. For example, manage intent lifecycle, optional operations…
[bookmark: _Toc159863287]8.1	Existing Services
Editor’s Note: This clause maps to existing services.
[bookmark: _Toc126401304][bookmark: _Toc159863288]8.2	Additional Services
Editor’s Note: This clause defines additional services to ETSI GS ZSM 002 [1] relevant to intent-driven Closed Loops within the ZSM framework architecture identified in Annex A.

[bookmark: _Toc126401305][bookmark: _Toc159863289][bookmark: _Toc455504149][bookmark: _Toc481503687][bookmark: _Toc482690136][bookmark: _Toc482690613][bookmark: _Toc482693309][bookmark: _Toc484176737][bookmark: _Toc484176760][bookmark: _Toc484176783][bookmark: _Toc487530219][bookmark: _Toc527986004][bookmark: _Toc19025633]Annex A (informative): Analysis of ETSI ZSM GS 009-1 and ETSI ZSM GS 002 (and other relevant ETSI ZSM specifications and ETSI ZSM reports).

Editor’s Note: This clause identifies the gaps in the enabling closed loops areas such as Governance, Coordination, Services, Architecture, etc. that need to be addressed for realizing intent-driven closed loops.

[bookmark: _Toc126401306][bookmark: _Toc159863290][bookmark: _Toc455504150][bookmark: _Toc481503688][bookmark: _Toc482690137][bookmark: _Toc482690614][bookmark: _Toc482693310][bookmark: _Toc484176738][bookmark: _Toc484176761][bookmark: _Toc484176784][bookmark: _Toc487530220][bookmark: _Toc527986005][bookmark: _Toc19025634]Annex B (normative):

[bookmark: _Toc455504155][bookmark: _Toc481503693][bookmark: _Toc482690142][bookmark: _Toc482690619][bookmark: _Toc482693315][bookmark: _Toc484176743][bookmark: _Toc484176766][bookmark: _Toc484176789][bookmark: _Toc487530225][bookmark: _Toc527986010][bookmark: _Toc19025638][bookmark: _Toc126401307][bookmark: _Toc159863291]Annex (informative):
Change History
	Date
	Version
	Information about changes

	02-2023
	0.0.1
	Approval of work item skeleton

	02-2023
	0.0.2
	Text adjustments based on discussions in the ZSM#22 meeting.

	06-2023
	0.0.3
	Incorporated contributions:
· ZSM(23)000015r3 ZSM016 - Intent-based closed loops in cross-domain management
· ZSM(23)000076r1 ZSM016 Use case: Intents for eMBB slices
· ZSM(23)000065r4 ZSM016 - Intent-driven Closed Loops Introduction

	06-2023
	0.0.4
	Incorporated contributions:
· ZSM(23)000113 ZSM016 - Intent management operations (CRUD)
· ZSM(23)000115 ZSM016 - Additional Services and Capabilities
· ZSM(23)000117 ZSM016_Changes_in_reference

	09-2023
	0.0.5
	Incorporated contributions:
· ZSM(23)000090r4 - Governing_an_intent-driven_closed_loop_and_additional_service
· ZSM(23)000118r3_ZSM016_-_Intent-driven_Closed_Loop_Governance_Service
· ZSM(23)000162r3_ZSM016_Using_smart_contracts_to_support_the_governance_of_intents
· ZSM(23)000165_ZSM016_-_Changes_on_clause_6_3
· ZSM(23)000182r1_ZSM016_-_Definition_of_terms_Intent-Owner-Handler

	11-2023
	0.0.6
	Incorporated contributions:
· ZSM(23)000181r2_ZSM016_-_Intent_LCM

	01-2024
	0.0.7
	Incorporated contributions:
· ZSM(23)000228r2_ZSM016 - Use_case Solving_conflicts_using_utility_information
· ZSM(23)000225r2_ZSM016_-_Optional_operations_-_Best
· ZSM(23)000224r2_ZSM016_-_Intent_management_entity_registry
· ZSM(23)000164r4_ZSM016_Add_Requirements_for_IMEs
· ZSM(23)000110r3_ZSM016_-_Optional_operations_-_Judge

	02-2024
	0.0.8
	Incorporated contributions:
· ZSM(24)000021r1 ZSM016 - Editorial changes
· ZSM(23)000241r2 ZSM016 - Additional Optional Services

	02-2024
	0.0.9
	Incorporated contributions:
· ZSM(23)000226r3_ZSM016_-_Optional_operations_-_Intent_Feasibility_Check
· ZSM(24)000040r1_ZSM016_-_Moving_Clause_4_2_3_to_6_3_2

ETSI
image2.png

image3.svg
 Cross -domain Integration Fabric E2E Service Management Domain Intent Management Entity New Intent E2E Intent Handling Domain Intent Handling Management Domain Intent Management Entity Intent Management Entity Intent Management Entity Domain Intent Handling Domain Intent Handling Closed Loop Closed Loop Closed Loop Intent LCM Intent LCM ZSM framework c onsumer

image4.png

image5.png

image6.png

image7.png

image8.png

image1.jpeg

