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1. Introduction 

Machine Learning (ML) and especially the application of neural networks has been able to 
achieve amazing successes in recent years due to the availability of large amounts of data as 
well as the increase in computing capacity. These successes include applications from image 
recognition, which now achieve better results than humans in many areas, the almost 
human-like abilities of speech recognition and conversation, which were finally 
demonstrated convincingly by the NLP model GPT3, or the massive superiority of algorithmic 
decision systems in learning and playing strategic games such as Go, demonstrated by the 
Google subsidiary DeepMind. 

The ability of a computer program to learn has been defined by Mitchel (Mitchell, 1997) in 
the following way: 

A computer program learns from an experience E with respect to a class of tasks T and a 
performance indicator P if its performance on tasks from T, measured by P, improves with 
the perception of E. 

Machine Learning is used as generic term for a sub-field of artificial intelligence, whereby the 
IT system is supposed to find solutions to problems on its own by learning from the 
information made available to it, in order to subsequently apply what it has learned to new 
data. Examples of ML algorithms are regression models, decision trees, Bayesian inference 
and kernel-based methods.  

Typically, a differentiation is made between supervised learning, unsupervised learning and 
reinforcement learning. Typical areas of application for the latter are real-time decisions, 
navigation for robots, game playing, and all areas in which the independent acquisition of 
knowledge and skills is involved [19]. Supervised and unsupervised learning can in turn be 
divided into two sub-parts, each of which has its own characteristic applications. The two 
paradigms classification and regression can be assigned to supervised learning. Typical 
applications for classification are fraud identification, image recognition, customer 
behaviour analysis and diagnosis. Regression is more typically used for popularity prediction 
in advertising, weather forecasting, market prediction, lifetime estimation and population 
growth prediction. Unsupervised learning can again be divided into two sub-paradigms: 
dimensionality reduction and clustering. Typical applications for the former are big data 
visualization, compression, structural analysis, feature minimization. Characteristic of 
clustering are recommendation systems, targeted marketing, segmentation. 
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Figure 1 Different areas in ML and their fields of application 

The success of ML in recent years has been particularly due to advances in the development 
of Artificial Neural Networks (ANN). ANNs define a ML approach that uses a layered network 
of mathematically modelled neurons. If an ANN has more than one internal layer (so called 
hidden layer), it is referred to as a Deep Neural Network (DNN). 

Learning in the field of ML is conceptually related to the idea of optimization and the two 
terms are often used interchangeably.  

With the increasing success of ML and ANNs, the need to integrate ML and ANNs into 
software systems that operate in a safety-critical environment is also growing. At this point 
at the latest, the question arises as to how ML and ANN-based systems can be tested and 
made safe. In this paper, we describe the basic challenges and requirements for testing ML-
based systems, mainly in the area of supervised learning, and hope to make a first 
contribution to solving this problem. 

2. General conditions of testing ML-based Systems  

An ANN is a software system that differs from classical software in that the structural design 
of the software (i.e., the human-coded behaviour) does not determine the desired 
functionality. The structural design is quite simple compared to classical software and 
consists of a specific arrangement of parameters and algorithms in a graph structure. 
Parameters and algorithms are arranged in such a way that they are able to approximate the 
function desired by the user as accurately as possible within the framework of an 
optimization process based on data.  

In particular, it is the data, the architecture of the network and the way how the training is 
carried out that are critical to the success of the approximation process. This dependence on 
data and architecture and the lack of function specific software code has both a major 
impact on quality assurance in general and testing in particular.  

• The software code of an ML model is generic and can be considered quite simple. 
Thus, it usually does not show the same error probability that classical software has. 

• On the other hand, the parameter settings that result from the training process and 
their interaction during inference are extremely complex and usually not 
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comprehensible to humans. They can be considered as a major origin of failures, but 
they are nearly impossible to test on a systematic basis.  

As a result, a much broader scope has to be set for testing. In addition to the typical white 
and black box procedure, data and the training process must become the subject of more 
intensive testing.  

In the following, we will take a closer look at some aspects that also define the general 
conditions for testing ML-based systems. 

2.1. ML-Model and ML-based systems 

In the context of quality assurance and testing, we cannot consider ML models in isolation. 
ML-models are trained, integrated, and applied within a particular technical and often 
physical environment. There is an extremely strong binding between the ML model and the 
environment in which it was trained and for which it was trained. Unlike classical software, 
this binding is often difficult to characterize because models and their properties are so 
complex that they are usually not understood.  

• ML models are dependent on the input data and their pre-processing. The collection 
and pre-processing process is done by hard- and software components that thus has 
a major impact on the performance of the model. 

• ML models provide complex output that must be carefully interpreted to lead to a 
reliable prediction or decision. This is usually done by additional software 
components that post-process the inference result. 

• ML models might be safeguarded and monitored by dedicated software components 
to ensure a reliable performance over time.  

• Finally, ML models are trained for a specific purpose, targeting a dedicated 
operational environment. Deviations between the environment (i.e. the data) used 
for training process and the actually operational environment might have crucial 
effects on the performance of the ML model in operation. Thus, especially the 
training process must be subject to quality assurance. 

As a foundation for testing ML-based systems we distinguish the following terms. 

An ML-model is the result of a training process that is dedicated to fulfilling a certain task or 
functionality.  It processes a set of input data to support a decision-making process based on 
that input data and a previously learned state. ML-models are used for different tasks. In 
general terms these are regression, classification, clustering, dimensionality reduction and 
control tasks (Zhang et. al. 2019). 

A decision-making process is a process based on assumptions of the target environment and 
a set of data that represent a state of the target environment resulting in the selection of a 
course of action among several possible alternative options. 

A training process is the process of building an ML-model using a dedicated training 
infrastructure and a set of data. The training process consists of various activities to select 
and prepare the data required for training and to tune the parameters in a model structure 
with the aim of training an ML model that is able to generalize beyond the training data to 
previously unseen data.   

The training infrastructure is a software-based infrastructure that enables an efficient 
training process. It consists of software that supports data selection, data preparation and 
the compilation of suitable data sets. It also provides algorithms and software to realize 
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different model architectures and operationalizes the training process so that different 
candidate models can be generated and compared.   

As already mentioned, data is central to the training process. In general, the following data 
sets are distinguished.  

• Training datasets are datasets with examples used for learning the patterns and 
relationships in the data and are used to train the weights of the ML model.  

• Validation datasets are used to tune the hyperparameters of a model. In particular, 
they are used to prevent overfitting of the model to the training data. 

• The test data sets are used after training to test the generalizability of the ML model. 
They are selected independently of the training data but should have the same 
probability distribution as the training data set.  

Validation and test data sets belong to the training process and thus to the modelling 
activities. This is to be distinguished in principle from the analytical activities of testing and 
quality assurance as defined in this paper. The latter must be separated from the 
constructive activities both technically and organizationally. On the one hand, the analytical 
activities are much more far-reaching than just testing the basic performance criteria such as 
over fitting and generalization, and on the other hand, they require organizational 
independence in order to be able to implement trustworthy results. 

As already mentioned, we are interested in testing ML models in application. In this respect, 
we are looking at so-called ML-based systems.  

A ML-based system is a software system, that integrates ML-models in order to support 
decision-making processes based on these models. 

2.2. Open context and technology 

ML-based systems are usually used for tasks that cannot be efficiently solved by classical 

programming. These include, in particular, problems that are too huge or too complex to be 

completely specified. This applies, for example, to applications that perform object detection 

in an uncontrolled environment such as road traffic or the surveillance of a railway line. In 

this case, the term open context problem is used to specify the Operational Design Domain 

of such a software. Open context problems are -complex and cannot be specified correctly 

in all details (Podey et. al, 2019). Any modelling is subject to assumptions that lead to an 

incomplete or unreliable deduction of the purpose, context and realization of the ML-based 

system. In addition, state of the art specification processes lack adequate specification 

means to model this kind of uncertainty in a meaningful way. Finally model representations 

of the problem (including the ML-model and thus the ML-based system) are necessarily 

incomplete, since without exactly knowing the purpose and context of a problem there is no 

way to specify and find representative data for all possible corner cases and the realization 

will lack a complete coverage of the ODD. 

Overall, such a situation leads to the fact that the verification (does the system work as 

planned/specified) of a system can no longer be fully guaranteed and, in particular, the 

question of validation (does the system do the right thing) must become increasingly 

important. 
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2.3. Stochastic solution approach and deep learning 

ML is considered to be a stochastic solution that is often applied to problems, that are 

intrinsically non-stochastic problems. The recognition of objects, for example, is in principle 

a deterministic and not a stochastic problem. Stochasticity comes into play because, as 

already said above, the available knowledge about the purpose and the context of the 

solution is limited.  A stochastic and data-based approach is considered to overcome some 

of the problems that are associated with the given knowledge gap.  

It is assumed that the lack of explicit knowledge about the variety of objects to be 

recognized can be compensated for by the availability of a sufficient number of examples 

that implicitly allow this knowledge to be extracted from the examples in the course of a 

training process. However, this comes at cost. Since no one knows the original distribution of 

the problem space, examples can only be selected based on a "best guess" about the 

configuration of the problem space. Moreover, deviations and errors are intrinsic to a 

stochastic solution approach. Thus, It therefore always has to be assumed that a stochastic 

solution cannot be completely correct in the deterministic sense. There will always be a 

“natural” error rate that must be accepted. The aim of the optimization process is to reduce 

this error rate to an acceptable level.  

Moreover, approximation methods are only partially reliable, and the generalization 

capability of any ML solution is limited and susceptible to distribution shifts.  

The technical implementation as ANN or DNN also has some properties that have to be 

considered separately in the test process.  

• In contrast to other forms of ML (e.g., linear or logistic regression, the k-nearest 

neighbour algorithm, Bayesian classifiers, SVM) specifically DNN lack transparency 

and stability. While interpretable models allow a human user to understand at least 

parts of the decision-making process, DNNs often show a better performance but in 

the same time the inference procedure lacks interpretability and statistical 

evaluability.  This means that for a human observer, even if he or she has access to 

the internals of the model, it is not comprehensible on the basis of which parameters 

and properties in the ML model a particular decision is made.  

• Furthermore, especially DNN lack reliable information on the quality of a decision. 

Although classification or regression models provide prediction probabilities at the 

end of the pipeline (e.g., by softmax output), these may unfortunately be often 

misinterpreted as model confidence. However, a model can be uncertain in its 

predictions even if its Softmax output is high (Yarin, 2016).  The provision of reliable 

statements on the uncertainty of a model decision, on the other hand, would make it 

possible to also design safety-critical applications more reliably. If reliable 

information on the decision uncertainty is provided in addition to the results, results 

with high uncertainty could be handled separately by higher-level systems or the 

user.  

• DNNs are not necessarily robust and are vulnerable to intentional and random 

perturbations. This has been shown in multiple examples through so called 

Adversarial Examples and the vulnerability of deep learning in the presence of noise.  



KI-LOK: Testing ML-based Systems 

 9 

• DNNs cannot be easily fixed or reoptimized at any point, i.e. models may have to be 

completely rebuilt if deviations occur.  

• Last but not least, ML-Models are integrated to form ML-based systems that may 

consist of a complex interplay between ML-Models and classical software. 

Considering the tolerances, errors and uncertainties that underlie the processing of 

data in ML models, the combination of several ML models and their interconnection 

results in a degree of complexity that far exceeds the complexity of classical 

software. 

2.4.  Fault and failure model for testing ML-based systems 

In classical software testing, a distinction is made between the terms failure, fault and error. 
While the term failure describes the perceived manifestation of a fault, the term fault 
describes the internal state of the program that has led to the failure and the term error 
describes the human cause that led to the fault. The ISTQB distinguishes the terms as 
follows: 

• fault (or defect): a flaw in a component or system that can cause the component or 
system to fail to perform its required function, e.g., an incorrect statement or data 
definition. A defect, if encountered during execution, may cause a failure of the 
component or system 

• failure: deviation of the component or system from its expected delivery, service, or 
result 

• error: a human action that produces an incorrect result.  

The existence of a failure shows that a system does not work as expected. However, not 
every fault in a software system shows up by a failure. Faults may have no effect because of 
the way the software is used, or their effect may be reduced by the shielding or corrective 
intervention of other software functions so that they do not become apparent. Moreover, 
failures are not only the result of software errors, but can also be caused by environmental 
conditions.  

Zang et al. (Zhang et al. 19) extend the notion of defect to ML by defining that an ML bug (or 
ML defect) refers to any imperfection in a machine learning item that causes a discordance 
between the existing and the required conditions. Compared to the definition of a fault, 
which refers to flaws in components or systems, the definition of Zang et al. extends to so-
called ML items, which, in addition to the components and systems, also allow other items 
from the ML process (eg. data) as carriers of a fault. 

Humbatova et al. (Humbatova et al. 2019) created a taxonomy of ML-faults based on 
interviews with academics and practitioners in the area of ML. On a high-level view, the 
taxonomy provides classes that locate ML faults in the different artifacts developed in an ML 
process. They distinguish on high-level between faults in the ML-model (Model), the API 
(API), the input data (Tensors & Input) and the training artifacts (Training). Figure 2 shows 
the high-level categories used by the taxonomy from Humbatova et al.  
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Figure 2 Categories of the ML fault taxonomy of Humbatova et al.  

Even if the above terms and concepts can be applied to ML, it remains fundamentally 
necessary to extend them in such a way that the specifics of ML are addressed more 
strongly.  

"Bug is not a suitable term to cover all functional insufficiencies, given its strong connotation to 
source code defects. Still, we need a new similarly succinct term in the context of MLware. We 
propose snag to refer to the difference between existing and required behaviours of MLware 
interwoven of data and source code. The root cause of a snag can be a bug either in the learning code 
or the infrastructure [36], but it is often related to inadequate training data – we call the latter 
phenomenon a dug.” (Borg 2020) 

Failures are usually identified as a deviation between the specification of a system and the 
actual behaviour of a system. As a prerequisite for such an approach, the specification of a 
system must be a reliable reference for the expected behaviour. Considering again the 
application of a system in an open context environment, the specification is not necessarily 
complete nor completely correct.  In the automotive industry, for example, ISO 21448 
(SOTIF) is concerned with ensuring the safety of intended functionality (SOTIF) in the 
absence of a failure. ISO 21448 applies to systems and applications that require adequate 
situational awareness to be considered safe and the term “absence of failures” is meant to 
characterize a system to act insufficiently even if it does not get into a specified failure 
situation. In addition to the absence of failures, such a system is expected to recognize 
potentially unknown and unsafe conditions and reduce the associated risks by itself. If it is 
not able to do so, the functionality or behavior is considered not sufficient for the aimed 
purpose. 

Podey et al. (Podey et al. 2019) distinguish between the so-called  

• aimed purpose of a system, which is implicitly expected and necessarily vague, and 
the  

• intended purpose of a system, relating to explicitly expressed expectations that is for 
example given by a specification.  

Podey et al. use the term intended in the same manner than explicitly expressed and as 
applied in the context of ISO26262 & SOTIF in the terms intended functionality and intended 
behaviour.  

Furthermore, it must be asked whether a stochastic system, as we find it in machine 
learning, is not by definition subject to failures. ML is an optimization process that tries to 
approximate an aimed purpose by adapting a set of parameters to best fit with a given set of 
data. Separating the data in training, test and validation data sets helps detecting overfitting 
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and allows to measure the generalization capabilities.  The overall optimization process is a 
trade between different model characteristics and ensures that, on average, a model works 
as expected. However, this always implies that situations can be found in which a model 
decision does not represent an optimum or could even be considered as wrong. Whether 
these statistical deviations need to be considered as individual failures or not is currently not 
defined sufficiently. 

How do we deal with a situation where an automated system on average leads to a better 
result than all comparable systems, but in a specific case performs in a clearly limited way? 
Do we consider this a failure and how do we deal with such a failure when we know that a 
better solution is not feasible under the given conditions? 

Software reliability is for example measured by the probability of successful runs, which is 
defined as the sum of the probabilities of successful runs divided by the sum of the 
probabilities of all runs. 

• Operationalizability through statistical benchmarking. Question: Is the 
benchmarking correct? 

• We cannot assign faults to every failure, but we can learn train. 

• Do we need XAI for the identification of defect state and defect cause? 

2.5. Objectives of testing ML-based systems 

Testing is the process of planning, preparation, and measurement with the aim of 
determining the properties of an IT system and showing the difference between the actual 
and the required state (Pol et. al. 2002). 

Two things are remarkable about this definition. Firstly, the software specification is not 
emphasised as the sole reference for the desired behaviour of a system, as is the case in 
many other definitions. This means that the test does not only address deviations between 
the specification and the behaviour of a software system, but also possible errors in the 
specification. The goal of testing in this case is not only verification but also validation of the 
system. Furthermore, the definition restricts the actual activities of testing not only to 
dynamic test procedures that involve an executable test object but also to static quality 
assurance activities such as review and other forms of analysis. The latter seems to make 
sense especially for the testing of ML-based systems, since with data and data sets a quality-
determining artefact exists that per se cannot be directly tested dynamically. 

Primarily, software testing is an activity that tries to find faults. This can improve the overall 
quality of the system and reduce the likelihood of undetected failures occurring. Zang et al. 
have also formulated their definition of ML testing accordingly:  

Machine Learning Testing (ML testing) refers to any activity designed to reveal machine 
learning bugs. (Zhang et al., 2019) 

In modern software development, testing as a systematic component of quality assurance 
also fulfils other tasks. Testing, among other things, serves to build confidence in the 
functionality of a system. In addition to finding errors, this also includes systematic testing, 
which at least attempts to formulate arguments for the absence of errors under certain 
conditions. Systematic testing approaches are used for this purpose, which, for example, 
divide the input data of a software system into classes and test selected representatives of 
each class. Furthermore, testing can contribute to a better understanding of an unknown 
system. The idea of exploratory testing describes testing as a creative act in which the tester 



KI-LOK: Testing ML-based Systems 

 12 

learns new properties of the SUT by performing tests and can incorporate them into new 
tests. 

 

However, software testing cannot prove that the system is free from faults. According to 
Dijkstra "Program testing can be used to show the presence of bugs, but never show their 
absence!" The reason for that is that exhaustive testing is (except for very simple test 
objects) not possible. Exhaustive testing means that all software functions and also all 
possible values in the input data would have to be tested in all their combinations, which is 
practically impossible.  

For this reason, various test strategies and concepts deal with the question of how to 
achieve a large test coverage with the smallest possible number of test cases. 

Testing ML-based systems is the process of planning, preparation, and measurement with 
the aim of determining the properties of ML-based systems and showing the difference 
between the actual and the aimed state. (adapted from. Pol et. al. 2002). 

In contrast to Zhang et al, we want to emphasize with this definition that testing ML is 
always also about testing the software surrounding the ML model. It is therefore not 
sufficient to ensure that an ML model works as intended as a single component, but always 
in the context of a practical application. This means that we test ML-based systems and not 
only ML models. 

Riccio et al. state that “testing techniques should not solely expose misclassifications and 
prediction errors at the ML model level, but rather look at the side-effects of such 
inaccuracies at the overall system level. Individual misclassifications (or individual mis-
predictions) are suboptimal definitions of failures if the whole MLS is considered, because 
they may have no consequences, or, on the contrary, may lead the overall system to deviate 
significantly from its requirements and result in a failure.”[5] (Riccio et al., 2019) 

2.6. Verification vs validation 

Challenges and limit of verification 

Challenges in validation 

3. Quality attributes addressed by testing ML-based systems 

 

 

3.1. Model relevance 

Overfitting, ability to generalize 

 

3.2. Correctness  

3.3. Robustness  

Intentional perturbation, randomly expected perturbation 
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3.4. Efficiency  

3.5. Security  

3.6. Confidentiality, Integrity, Availability 

 

3.7. Data Privacy  

 

3.8. Fairness  

 

3.9. Interpretability 

3.10. Learnability 
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4. Test objects and integration in testing ML-based systems 

The term test object describes the object to be tested by a particular analytical procedure. In 
the case of dynamic testing, this is also referred to as System Under Test (SUT), which 
somehow highlights the dynamic nature of the test object. However, in the following, we 
use the more general term test object, analogous to the ISTQB, analogous to the ISTQB, to 
emphasize that we are addressing both static and dynamic test procedures. 

Although our primary test object, as the name of this paper suggests, is an ML-based system 
in a meaningful deployment environment, we obtain several other test objects that can be 
tested individually or partially integrated considering the genesis of an ML-based System as 
well as its systematic integration from individual components.  

Due to the high importance of the data and the training process, we explicitly distinguish 
between test objects of the training phase, which are decisive for the quality and properties 
of an ML model, and the development and runtime artefacts, which are relevant for the 
software-technical creation and integration of an ML-based system based on individual 
components. 

Zhang et al., 2019 for example distinguishes on a high-level between data, the learning 
program (i.e., the training infrastructure) and the ML-framework (i.e., the libraries and 
building blocks that are used to define models).  

“Thus, when conducting ML testing, developers may need to try to find bugs in every 
component including the data, the learning program, and the framework.“ (Zhang et al., 
2019). 

From our point of view, the test objects of the training phase include at least the following 
artefacts. 

• Data 

• Hyperparameters  

• Loss function 

• Optimiser 

• Training KPIs and end criteria 

• Network architecture 

The test objects of the software-technical creation and integration are: 

• Data pre-processing software during engineering 

• ML-Model 
o Parameters 
o Implementation of the model by software 

• ML-Framework 
o Libraries and algorithms 

• Data pre-processing for operation 

• Model in integration 
o Safety mechanisms (safety cage, redundant models) 
o Software-hardware embedding (model and data pre-processing or result 

preparation, GPU integration) 

• ML-based system or component (full integration) 
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However, the concrete definition of individual test object is determined by the test method 
used, the life cycle phase in which the test takes place and by the progress of the integration 
of an ML-based system from its individual components. 

Especially in dynamic testing, the definition of the test object depends strongly on the test 
levels in the integration. Classically, a distinction is made here between the component test, 
the integration test, the system test and the acceptance test. Transferred to the test of ML-
based systems, we have to consider the following test levels. 

 
Figure 3 Different test levels in testing ML-based systems 

• During data testing the data that are used for training are tested. 

• During component testing, the individual components of an ML-based system are 
tested. These include the ML model, the data pre-processing, all other functional 
components as well as components that are explicitly introduced to secure the 
runtime of an ML model. 

• During integration testing, interface functionality and integrated behaviour are 
tested. During integration, the ML model must always be tested in the data 
processing chain. This means that the ML model is integrated with any components 
for data pre-processing as well as in the integration with post-processing or decision-
making. In addition, it must be checked that the ML model and the ML framework 
are tested regarding all other aspects of hardware and software integration.  

• During system testing the whole ML-based system is tested in a dedicated test 
environment. 

• During acceptance testing the whole ML-based system is tested in its actual 
operation environment 

Furthermore, it would have to be discussed whether, due to the risks associated with the 
uncertainties of ML, online tests should not also be taken into account at runtime. These 
tests go hand in hand with dedicated security and monitoring components that are 
supposed to identify corner cases and potential distribution shifts.   
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5.  Test methods for testing ML-based systems 

This chapter describes various test methods that can be used for analytical quality assurance of 

ML-based systems. A recurring question is whether testing should be performed exclusively 

dynamically, i.e. the executable, compiled code is always checked, or whether static analyses such 

as reviews, model checking, etc. should also be counted as testing. 

In the case of ML-based systems, where the meaning of individual parameters, for example, is no 

longer clear and which can only be adapted by extensive learning on the basis of training data, 

static methods are, in our view, an essential part of testing. Completeness and representativeness 

of the data, for example, cannot be evaluated simulatively, and neither can the relevance of a 

model. 

Since ML-based systems are in particular also SW systems, the known and established test 

methods can also be applied to them. Due to their special characteristics, however, some of these 

methods are more or less relevant and may need an adaptation here and there. In the following, 

some common methods are briefly described, which modifications may have to be made, and 

evaluated for their suitability for testing these new systems. 

5.1. Requirements-based testing 

The standard norm for testing is the fulfilled proof of all requirements in a requirement 

specification. ML-based systems, however, usually operate in open domains, see chapter 2.2. An 

even approximately complete list of requirements will not exist. Therefore, explicit requirements 

are usually insufficient as a basis for testing. Nevertheless, a detailed analysis of the requirements 

specification should be the starting point for testing. Because in it the delimitation of the ML-

based system is to be found, what it should do and where it is not responsible, and above all, in 

which environment it is to be used. Very helpful, if available, are detailed use cases [9], which 

narratively describe requirements and the possible interactions of the system with their intended 

environment. 

5.1.1. Evaluation of the data 

To evaluate the training data, its balance and completeness, it is essential to obtain a good 

overview of the various contexts in which the ML-based system is to be used. Therefore, it 

recommended to first extensively analyse and extend the given use cases. These virtual 

simulations can more precisely delineate the operation domain and identify further edge cases. 

Thus, they help to develop an ontology of the environment. 

5.1.2. Derivation of test cases 

Based on the requirements in the specifications, test cases must be systematically derived that 

can provide evidence of their fulfillment. The guiding question here is what can go wrong and will 

the identified, possible errors be completely covered up by tests. 

Since ML-based systems usually infer probabilistically, an error cannot be proven by one 

counterexample, e.g. one wrong face recognition. Rather, it has to be checked during testing 

whether statistically the number of false results is significant. Only then is there a case of 

misbehavior. This means, in particular, that in the case of ML-based systems, a single proof of an 

erroneous inference is not sufficient. If necessary, many similar tests must be defined and 

performed for a requirement so that a statistical evaluation of their results is possible. 

5.2. Risk-based testing 

Increasingly with their successes and growing capabilities, ML-based systems are also being used 

in critical areas. A prerequisite for this is a risk analysis. In the risk analysis, extensive testing is 

then required, especially for risk mitigation, to prove possible, dangerous behavior of the system 

as unlikely. 
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In some of the general risk drivers and assesments such as Security and Safety or item types ML-

based systems are not fundamentally different to general SW, [11], and shall therefore not be 

considered further here. In the area of functional safety and especially in the possible risk 

exposure and analytical estimation, however, they are very different. 

5.2.1.  Functional Safety 

Again, due to the statistical nature of the ML-based system, a single counterexample may not 

immediately be considered a violation of Functional Safety. Rather, the failure must be statistically 

proven here as well. 

Various factors influence the estimation of ML technology-related risks: risk exposure in the 

environment, severity of the hazard and statistical behavior of the ML-based component. In order 

to now estimate the remaining risk using testing, it is recommended to represent the results by 

means of a 3-shaped risk tensor, where the indices go over the above factors, [10]. A final overall 

assessment of the risk can be performed with this tensor application specific. 

5.2.2.  Analytical Estimation 

Dynamic tests always check samples whose selection must also be justified. Therefore, in the field 

of conventional SW, complementary analytical estimations are usually expected. However, this is 

almost impossible for ML-based systems that use e.g., deep nets, since they are hardly analytically 

accessible so far with their multitude of parameters and nonlinearities. Current Explainable AI 

(XAI) research is investigating many different approaches here. 

Over- Underfitting. 

If the ML model has too many or too few parameters, new misbehaviour may occur. In the first 

case, the system learns to react convincingly in the training situations, but fails in new situations, 

(Poor Generalization, Overfitting). In the second case, the system only moderately learns the 

training data, but usually behaves similarly in new situations (Underfitting). Thus, the system will 

react much more imperformantly in novel situations or will consistently fail to exploit a possible 

mitigation potential. Indicator for overfitting or underfitting is monitoring and evaluating the 

learning process. If, in the further course of training, the loss values on the validation set are 

significantly higher than on the training data, this indicates overfitting. If, on the other hand, the 

loss values on both data sets remain equally bad despite extensive learning, this points to 

underfitting. 

Analytically, behind the problem of over/under fitting lies the fact that the capacity of the network 

is not adequate to the problem (relevance of the model). For this purpose, the capacity of the 

selected ML model can be estimated analytically [12] and compared with the complexity of the 

learning data. 

Lipschitz constraint 

If a natural metric exists on the space of learning data, e.g., a variant of the Euclidean metric on 

the high-dimensional real vector space of pixel data of images, and the decision of the ML model 

is based on simple evaluations in a high-dimensional feature space, e.g., via max-pooling or 

softmax in the penultimate layer of a neural network, a Lipschitz constraint can be usefully 

defined and estimated. The Lipschitz constant then provides an analytical estimate of a network's 

susceptibility to perturbation and hence its robustness. 

5.3. Search-based testing 

Are runtime constraints met, memory consumption, or other constraints such as value or output 

ranges? These are classic questions to the test, which are met by a targeted search for extreme 

examples. Various optimization algorithms are used to solve them. For ML-based systems, the use 

of these methods shifts away from the possible extreme cases for the test object to targeted 

perturbations of the inputs for the purpose of intentional misbehaviour. E.g., how to purposefully 
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obtain false classifications, manipulate facial images so that the account protected with biometric 

data can be opened without authorization? Or in the case of reinforcement learning, how are the 

feedbacks to be changed so that the algorithm becomes unstable? 

Since ML-based systems are now used in many security-critical areas, robustness against hostile 

manipulation is of utmost importance. Thus, there is a whole branch of research that investigates 

the topic of adversarial attacks [15]. 

In the classic case of search-based testing, individual extreme examples are sought for the test. 

The goal is to test the test object even in these cases. This approach reaches a new level for ML-

based systems. Since the learning process of these systems is typically an optimization itself, this 

technique can be used not only to discover single counterexamples, but also to generate 

arbitrarily many new input data that can challenge the old system. For this purpose, one couples a 

generative model and a discriminator together in the form of a two-person zero-sum game 

(GAN): the generator tries to produce as good as possible fake copies of the original data, the 

discriminator hangs to distinguish real and fake data [14], which are available with the training 

data. 

Nowadays, there are various extensions of this technology and a wide variety of applications, 

including transforming a blackbox ML-based system into a whitebox system with a known 

architecture. 

5.4. Combinatorial testing 

A common way to systematically increase the test depth is to combine different test cases. In the 

area of embedded systems, for example, the classification tree method [13] is often used for this 

purpose. The initially unstructured test space is partitioned into classifications and classes 

according to various test aspects. This partitioning is then used for test planning: Which 

combinations of classes are relevant, which combinatorics should be considered, and how many 

test cases should be defined for them?  

This technique gains new importance for testing ML-based systems. 

Since the meaning of the numerous parameters of a model and their influence are usually not 

understood and are only adjusted by the learning process, a balanced, representative selection of 

training data is essential. In order to check the completeness of the data it is useful to define the 

planned environment of the test object according to various aspects like: Typical situations, risk 

areas, possible disturbing influences.... at first. Afterwards this classification can be refined into 

concrete scenarios and risks or also perturbations e.g. and in this way the environment can be 

divided according to various viewpoints. Such a partitioning of the environment, weighted with 

their respective meanings, the frequency of their occurrence, the associated risk, etc., then allows 

a combinatorial estimation of the required distribution of the training data. 

5.5. Metamorphic testing 

 

 

5.6. Exploratory testing 

5.7. Probabilistic testing 

5.8. Testing with failure models 

5.9. Diversifying test 

Back to back test, regression test 
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5.10. Reviews 

5.11. Static analysis 
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6. Workflow and process aspects of testing ML-based systems 

Software testing is an activity that is oriented towards the life cycle of a software component 
and itself passes through various phases. A typical software testing process can for example 
distinguish test planning, test design & analysis, test implementation & execution as well as 
evaluating test exit criteria and reporting.  

These or slightly varying phase distributions are also found in the literature and common 
standards. In the context of this paper, we use the above-mentioned division into phases to 
describe the challenges along the individual phases that we see specifically for the testing of 
ML-based systems. 

6.1. Test planning phase 

Roughly speaking, the test planning phase serves to define the quality objectives, determine 
the test objects and set up a test strategy that serves to test the desired quality objectives in 
a meaningful way. Afterwards the entire test process is planned in its technical, temporal, 
and monetary aspects, taking into account the available resources. 

A test strategy describes which parts of the system are to be tested with which intensity, 
using which test methods and techniques, using which test infrastructure and in which 
order. 

Testing ML-based systems places some special challenges on the test planning phase.  

Challenge 1: Selection of appropriate quality and test objectives 

Since ML-based system slightly differ in terms of engineering as well as operation, the test 
process must address additional test objectives, that are often not addressed in classical 
software testing. Besides coverage of the relevant functional aspects of the application 
context including standard cases/scenarios, all critical corner cases/scenarios as well as all 
defined non-functional properties like security, robustness, performance etc., testing ML-
based systems need to reveal  

• data and labelling errors that lead to critical functional failures 

• software failures that undermine critical functionality during model training and 
model inference 

• unused or unintended decision capabilities of a model  

• bias and noise in decision processes 

• known vulnerabilities and failure modes of the technology used eg. in DNNs/CNNs  

Challenge 2: Determining all relevant test objects and the corresponding test procedures 

To comprehensively test ML-based software systems, several new test objects must be 
considered that are given little to no attention in classic software. These test objects are: 

• data and labels 

• hyperparameters  

• loss function 

• optimiser 

• training KPIs and end criteria 

• network architecture and additional design decision defining basic model properties 

• the ML-Model including the software implementation of the models’ internal 
behaviour and all parameter settings 

• the ML-Framework including the used libraries and algorithms 
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• data pre-processing software during engineering 

• additional components that serve a proper integration of the ML-model including 
safety mechanisms (safety cage, redundant models), model and data pre-processing 
or result preparation, GPU integration. 

Challenge 3 Definition of an appropriate integration and test procedure. 

ML-based systems are complex entities with high dependencies. Thus, the quality of an ML-
based decision system is not only based on the performance of the ML model, but also on  

• the performance of the data pre-processing chain including all the required sensors 
and data fusion components,  

• the software that interprets the output of the ML model, processes it for humans 
and/or translates it into actions, and  

• the seamless interaction of all these components.  

In addition, the quality of the target system is dependent on the training data, data 
preparation, and training infrastructure. Thus, a systematic test approach does not only 
target the system and its integration, but also the entire data acquisition and training 
infrastructure. If we take this into account, the test levels of classical software testing can be 
extended as follows. 

• data pipeline testing 

• training pipeline testing 

• data and data integration testing: 

• component testing: ML-Model, data pre-processing, decision making 

• integration testing:  Model in data pre-processing chain, Model in data pre-
processing chain + decision making, ML-model subsystem with safeguarding 

• system testing:  Entire system in test environment 

• acceptance testing: Entire system in operational environment 

• runtime testing  

6.2. Test design & analysis phase 

The test design and analysis phase serve to implement the test objectives defined in the 
strategy in a meaningful way. This includes the identification of the abstract tests, the 
definition of suitable coverage and completeness measures and the specification of suitable 
procedures and frameworks for the automation of the tests. 

Challenge 1: Identification of appropriate data testing procedures 

Due to the high importance of data for the performance of a ML model, both the data, its 
origin, its storage, and preparation must be systematically tested and reviewed. In this 
context we distinguish between testing the data acquisition, preparation and storage 
infrastructures and testing the data and data quality itself. 

Testing the data acquisition, preparation and storage infrastructures mainly addresses 
aspects of infrastructure testing like data base testing, testing the underlying communication 
and computation platforms regarding performance and availability, and the data processing 
infrastructures that allow for data preparation and refinement. The test approach must 
consider that these infrastructures are often dealing with big data that is, most of the 
processes are highly automated and require a high degree of availability and scalability that 
poses special requirements on hardware and software solutions with corresponding 
challenges for testing (see [16][17]). 
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According to L.P. English [18]data quality can be subdivided into three aspects, which can be 
considered independently of each other. 

• Data definition and information architecture quality describes the quality of the data 
specification based on the application context.  

• Data content quality describes the inherent quality characteristics of the data such as 
correctness of data values, completeness, unambiguity, freedom from errors, etc. 

• Data presentation quality describes how the data can be made available 
appropriately quickly, in a suitable format, and with a reasonable amount of effort. 

Data quality dimensions are attributes of data quality that, if measured correctly, can 
describe the overall level of data quality. The identification of relevant quality dimensions 
forms the basis for the assessment and subsequent improvement of data quality. The quality 
dimensions are usually highly context-dependent, and their relevance and importance can 
vary depending on the organization and data type. The most common, i.e., the most 
frequently cited dimensions in the literature, are completeness, timeliness, and accuracy, 
followed by consistency and accessibility [19]. 

Overall, assessing data quality for ML applications is a complex task. Current best practices 
suggest that more data and better models provide better results.  

• Poor data quality can cause significant problems in both ML model building and big 
data applications.  

• Certain systematic preprocessing operations on the data help these models achieve 
higher effectiveness. 

• While traditionally data quality is assessed before the data is used, in the machine 
learning context quality can be assessed both before and after the model is built.  

• Data quality can be assessed before the learning process along the data and its 
compilation processes and after the learning process along the performance of the 
ML model. 

• The data quality is evaluated along different quality attributes, so that systematic 
evaluation criteria for the data quality can be established. 

To date there are no testing approaches that directly address the issues from above in a 
systematic and automated manner. 

Challenge 2: Identification and selection of appropriate tests for complex/open world 
scenarios 

Testing machine learning suffers from a particularly difficult form of the oracle problem.  
While classical systems are usually fully specified, machine learning systems are designed to 
provide meaningful answers to questions for which there is not yet an answer known [1] 
(Zhang et al.). Training ML models typically aims to achieve good performance on training 
data while being able to generalize well to unseen, new data. For the models to learn the 
underlying function from the data provided to them, that data must sufficiently capture the 
features of the real-world problem. If incomplete, outdated, or irrelevant data are provided 
to the model, the model will not generalize towards unseen data. 

The problem for testing then consists of defining suitable criteria for defining the 
completeness of the data for a partially unknown range and to generate test cases that 
systematically represent the entire input range. In addition, the test cases must be stored 
with suitable expected values that allow a systematic evaluation of a test run. This special 
form of the Oracle problem known from testing prevents a scalable test data generation. 
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Solution approaches, such as metamorphic testing [32], are not yet able to realize the 
necessary scalability and efficiency required for a comprehensive testing approach.    

Challenge 3: Dealing with ML-specific failure modes 

Since ML and ML-based systems show significant differences to classical software 
engineering, testing processes may fail if they do not address failure modes that are specific 
for ML-based systems. These failure modes include bias, non-determinism, lack of 
robustness, and lack of transparency and understandability. 

Decision bias: Bias in machine learning is a type of error in which certain elements of a 
dataset are weighted and/or represented more heavily than others. A biased dataset does 
not accurately represent the intended use case of a model, leading to biased results, low 
accuracy, and analytical errors. Bias can occur in several different areas, from human 
reporting and selection bias to algorithmic and interpretation bias. Sampling bias, for 
example, occurs when a dataset selected for training does not reflect the realities of the use 
case (e.g., when facial recognition relies significantly on data from only one population 
group e.g., men, women, Europeans). Exclusion bias most often occurs in the pre-processing 
phase of the data. It is often caused by the deletion of valuable information that is 
considered unimportant e.g., the deletion of a relevant feature that has not been recognized 
or that has been considered as unimportant. Measurement bias occurs when the data 
collected for training is different from the data collected in the real world, for example, 
when different sensors are used to record the training data as with the production data. 
Measurement bias can also result from inconsistent label assignment during the data 
labelling phase of a project. Finally, observer bias also known as confirmation bias, is the 
effect of seeing what you expect or want to see in the data during manual data selection and 
labelling processes. 

Probabilistic nature and non-determinism: ML-based software, even if it has some 
fundamentally deterministic properties, is not necessarily stable with respect to the 
environment and environmental changes. Moreover, the training process itself is often 
nondeterministic and thus difficult to reproduce. Non-determinism in the training phase 
arises from the random initialization of model parameters, the stochastic selection of 
training data (e.g.  mini batch sampling), and the use of stochastic functions in the 
optimization process. Non-determinism in the operation phase may arise using stochastic 
activation and weight functions. Moreover, neural networks are typically trained on graphics 
processing units (GPUs), which, under certain experimental conditions, yield 
nondeterministic outcomes for floating point operations.  

Missing robustness: Robustness is the ability of a computer system to deal with erroneous 
input and to handle errors during execution. An ML model is considered robust if small 
perturbations in the input space yield only small perturbations in the output space. Since ML 
has been shown to be especially vulnerable against so called adversarial examples and 
against distributional shift, it can only be considered robust under certain circumstances.   

An adversarial example is an input to a neural network that has been modified in such a way 
that it alters the output of the neural network, even though a human would still recognize 
the original class. In the extreme case, the modified input is indistinguishable from the 
original input for a human. Distributional shift describes a difference between the test and 
training environments [Ref 1]. Such distributional differences can be considered as gaps in 
the representation of reality and are a general problem in designing ML applications to be 
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used in real-world applications. If the perceptual or heuristic inference processes of such a 
model have not been adequately trained to the correct distribution or the distribution of the 
environment changes in operation, the risk of unintended and harmful behaviour increases 
significantly.  

Lack of transparency and understandability:  Neural networks function as black box 
systems. Instead of humans explicitly coding the system behaviour with conventional 
programming, in ML the computer program learns based on many examples that represent 
the mapping of the input data to the desired output. Transparency in AI is generally referred 
to as explainability, which includes both interpretability and confidence in the system and its 
genesis[29][30]. While interpretability is the degree to which a human can understand the 
cause of a decision [31], confidence in a system is gained by understanding the system itself, 
its operational environment as well as the development of the system.   

A challenge regarding testing arises from the dependence on a system that not even the 
developers and testers really understand. To gain confidence and certainty regarding 
elemental quality properties of neural networks, it is essential to enable at least a certain 
degree of human interpretability and understandability.  

Challenge 4: Definition of appropriate coverage and completeness criteria 

Due to the lack of logical structures and system specification, it is still unclear how evidence 
regarding test completeness could be provided for ML-based systems especially for those 
with DNN components. To date, there are several proposals that combine systematic testing 
of ML-based systems with coverage criteria related to the structure of DNNs. These include 
simple neuron coverage by Pei et al. [23], which considers the activation of individual 
neurons in a network as a variant of statement coverage. Ma et al. [22] define additional 
coverage criteria that follow a similar logic to neuron coverage and focus on the relative 
strength of the activation of a neuron in its neighbourhood. Motivated by the MC/DC tests 
for traditional software, Sun et al. [24] proposes an MC/DC variant for DNNs, which 
establishes a causal relationship between neurons clustering i.e., the features in DNNs. The 
core idea is to ensure that not only the presence of a feature, but also the combination of 
complex features from simple feature needs to be tested. Wicker et al.  [25] and Cheng et al. 
[26]refer to partitions of the input space as coverage items, so that coverage measures are 
defined considering essential properties of the input data distribution. While Wicker et al. 
discretizes the input data space into a set of hyper-rectangles, in Cheng al. it is assumed that 
the input data space can be partitioned along a set of weighted criteria to describe the 
operating conditions. Finally, Kim et al. [21] evaluate the relative novelty of the test data 
with respect to the training dataset by measuring the difference in activation patterns in the 
DNN between each input. A good summary of the current state of the art regarding 
coverage criteria for testing DNNs can be found in [20]. In addition, the work of Dong et al 
[27] claims that there is only a limited correlation between the degree of different kinds of 
neuron coverage and the robustness of a DNN, i.e., improving the degree of simple neuron 
coverage measures does not significantly contribute to improving the robustness. However, 
in their study, Dong et al. did not analyse the effect of more complex coverage approaches 
(e.g., feature coverage and the MC/DC variant for DNNs) as well as coverage approaches 
that address the partitioning of the input data space.   
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6.3. Test Implementation & execution phase 

During the implementation and execution phase test cases are created and executed. Test 
cases should be based on the objectives and requirements identified during the planning and 
analysis phase. During the execution, the test team performs all tests. The deviations are 
logged, and defects are identified. Deviations are measured as the difference between actual 
and expected test results. 

Challenge 1: Synthetic test data generation  

ML systems process a wide variety of data. These range from simple tabular data to complex 
data streams (images, movies, radar or lidar data), such as those processed in ML-based 
perception systems. To be able to test such systems and to make the necessary large 
amounts of data available in sufficient diversity, data will have to be synthetically generated. 
The more complex the input data, the more complex is the process of data generation. For 
example, the creation of synthetic film sequences is significantly more complex and 
resource-intensive than the provision of simple numerical quantities. 

Challenge 2: Achieving the necessary degree of automation and scalability.  

The complexity and uninterpretability of DNNs lead to the fact that manual testing 
approaches are not sufficient to perform a comprehensive quality assurance of a DNN. 

To cope with the complexity of the applications and to achieve consistent results in repeated 
tests a high degree of automation is required. Automation should encompass all necessary 
activities of the testing process, starting with test case identification, test data generation, 
test execution, and final test evaluation. Similar, to the training of an ML model, such an 
automated testing approach relies on a larger technical infrastructure that realizes 
automation in a in a trustworthy and reliable manner. 

However, generating test cases automatically is still a challenge. For instance, studies [85, 86] claimed that 

the test cases generated by an automated testing tool may not cover all real-world cases. (Zhang 2020) 

 

6.4. Evaluating exit criteria and reporting phase 

The test evaluation and reporting phase is used to evaluate the test execution against the 
defined and agreed exit criteria. Based on this evaluation, a decision can be made as to 
whether enough tests have been performed to achieve the quality objectives defined in the 
planning phase. The result of the test evaluation is then documented and summarized in a 
form that can be understood by all relevant stakeholders. 

Challenge 1: Define and apply appropriate end-of-test criteria and validation metrics. 

The interpretation, aggregation and evaluation of individual test results and the evaluation 
of the entire test process for ML-based systems can differ greatly from the procedures that 
are established for classical software systems. On the one hand, completely new test 
procedures have to be taken into account due to the consideration of data as a decisive 
quality factor, and on the other hand, the specific characteristics of an ML-based system, 
especially with regard to its failure characteristics, lead to different evaluation approaches. 

On the one hand, DNNs in particular feature a complexity that is not reached by classic 
software. While it is possible to trace failure modes back to individual errors in classical 
software systems, this is much more difficult in ML-based systems. The high number of 
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parameters, hyperparameters and optimization decisions makes it almost impossible to 
identify wrong parameters as the cause of a concrete failure mode. 

Additionally, when considering different quality properties, it is important to keep in mind 
that there are dependencies between these properties, so that improving the KPIs for one 
property will worsen the KPIs of another property. 

Risk-based testing approaches are basically able to relate variable quality properties of a 
system to the risks to the financial and fundamental risks of an application. An end-to-end 
approach on how to comprehensively apply risk-based testing in the context of ML systems 
has been sparsely explored.   

Challenge 2: Communicate test status and evidence on quality in a comprehensible and 
trustworthy way 

Test reports are designed to enable managers and users of software products to assess and 
understand the quality and risks of a software product in its application. To this end, the 
tests, their results, and the metrics used to demonstrate the performance of an ML-based 
system must be expressed in terms of their impact on the application domain in an 
understandable way. This is particularly important when it comes to assessing 
interconnected quality properties between which there may be a conflicting objective.   
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7. Testing in the ML-Life Cycle 

 
Figure 4 The MLOps life cycle 

7.1. Plan 

Purpose: This phase serves to develop a basic understanding of the problem to be solved by 
ML as well as the data required for it. Developers and spzeificators decide which features are 
feasible with machine learning and which can be useful for a given existing or a new product. 
Importantly, it is at this stage that they decide what types of models are best suited for the 
given problem and what data is needed to successfully learn the desired features. 

• Testing requirements and KPIs 

7.2. Data Engineering 

This phase aims to identify the right data sets in the right distributions, collect the data in 
such a way that the model output can be delivered as efficiently as possible, enrich the data 
through labeling, store the lineage of the data, verify the quality of the labeled and prepared 
data, establish specific metrics to measure the quality of the data, store and analyze the 
data. 

1. Testing the data sources and their reliability 
2. Testing the data preparation and training pipeline (training phase) 
3. Testing the data  

7.3. Code 

Purpose: This phase aims to develop the source code that is required for setting up the model 
and related components. This includes, among other things, all components that form the 
data preparation and decision pipeline during deployment. The individual components, the 
software implementation of the model and the integration of all components into a 
functional unit must be realized and tested. 

1. Testing the decision pipeline (in integration) 

7.4. Model Engineering 

Purpose: This phase aims to parameterize and train model variants based on the available 
data and their labels by considering all related requirements, and to identify and select the 
most appropriate model.  In practice, training runs are performed with different model 
architectures and initial parameters (hyperparameters) and the results are compared. All 
resulting models are benchmarked, evaluating their properties in terms of accuracy and 
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generalizability. The best model(s) is/are selected and passed to the subsequent process for 
further V&V. For modeling, predefined ML frameworks are usually used to support the 
developers in creating the model code and realizing the algorithms. 

1. Testing the model architecture and other design decisions 
2. Testing the model pipeline 
3. Testing the training assumptions (Hyperparameter settings, algorithms etc.) 
4. Testing the model software and third party libraries 

7.5. Model V&V 

Purpose: In this phase, the model is fully validated and verified. The aim is to assess the 
extent to which the model fully meets the functional and extra functional requirements 
given. In addition to accuracy and generalizability, scalability, complexity, robustness, 
fairness and resource requirements in particular play a crucial role in the evaluation of a 
model. The model is checked against all relevant performance characteristics and KPIs. 
Finally, it is decided at this point whether the model(s) at hand are suitable for integration 
into the software stack or need to be improved via further iterations. 

1. Testing the functional aspects of the ML-model 
2. Testing extra-functional aspects of the ML-model e.g. robustness, fairness, 

transparency, security, scalability 

7.6. Test 

Purpose: The selected model must be tested and evaluated in its deployment environment. 
For this purpose, the model must be integrated with the software and hardware of the target 
platform and systematically tested. The evaluation focuses on the safe functioning of the 
model in interaction with the necessary software and hardware as well as the interaction 
with additional safety components and functions, such as watchdogs for identifying 
dangerous situations and performing plausibility checks, redundancy for safeguarding the 
overall functionality, etc. 

1. Model integration testing  
2. SW/HW integration testing 

7.7. Release 

Purpose: 

 

1. Testing end to end functionality 

7.8. Deploy 

Purpose: 

 

1. Acceptance testing 

 

7.9. Operate 

Purpose: 

1. Runtime testing 
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7.10. Monitor 

Purpose: Collecting data and providing analytics on customer behaviour, performance, errors 
and more. 
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8. Summary and conclusion 
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