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ABSTRACT

Realistic modeling of the nodes’ mobility is essential for
obtaining credible results from the simulative performance
evaluation of wireless multi-hop networks. However, most of
the mobility models in the literature have not been validated
with real world movement traces. To overcome this issue, we
follow a trace-based approach to mobility modeling, where
movement traces from the real world scenario are statisti-
cally analyzed and used for parametrization. In this paper,
we introduce and evaluate a new realistic mobility model
for first responder scenarios based on such an analysis while
also considering geographic restrictions by incorporating free
publicly available map data.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless Communication; I.6.5
[Simulation and Modeling]: Model Development

General Terms

Performance, Design

Keywords

Mesh Networks, Simulation, Trace Analysis, Mobility
Model, First Responder

1. INTRODUCTION
Wireless multi-hop networks, such as Mobile Ad hoc NET-

works (MANETs), mesh networks, and sensor networks,
have been in the focus of mobile network research for the
last few decades. MANETs [9] do not rely on infrastruc-
ture. The dynamic nodes in the network act as routers and
communication end-points at the same time. They are very
well suited for deployment in catastrophe scenarios or in the
military domain. However, one major challenge in MANETs
is robustness which is a key requirement in first responder
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scenarios. Mesh networks do also consist of static nodes
which act as a wireless multi-hop backbone, thereby provid-
ing more robustness. Thus, mesh networks are deployed as
first responder networks. As an example, we name the San
Mateo Police Department in San Francisco (cf. [7]).

The biggest challenge within the research area of mesh
networks — and of wireless multi-hop networks in general
— is the efficient routing of messages. Therefore, the per-
formance of routing protocols in these networks needs to be
evaluated. Since real testbeds are expensive and lack scala-
bility as well as reproducibility, simulation is the most com-
monly chosen technique for performance evaluation. How-
ever, the simulation results reflect reality only as much as
the used models do. Thus, realistic models are a crucial
factor for the credibility of the simulation results.

Mobility models have a significant impact on the perfor-
mance evaluation results in wireless multi-hop networks (cf.
e.g., [8, 10, 26]). Nevertheless, in most performance studies,
synthetic random-based models such as the Random Way-
point (RWP) mobility model are used (cf. [20]). Common
assumptions of these abstract models are unrestricted node
movement and uniformly distributed selection of target po-
sitions. With these unrealistic assumptions, the movement
characteristics of specific scenarios in general, and of first re-
sponder scenarios in particular, cannot be properly reflected.

Apart from abstract models, there are also a lot of syn-
thetic scenario-dependent models (for an overview, see e.g.,
[3, 4, 8]). However, only a few of these have been vali-
dated with real world movement traces. Therefore, it is
unclear to which amount these models reflect the character-
istic movement patterns of the scenario they are based on.
To overcome this credibility issue, a trace-based modeling
approach can be taken: Traces are gathered from the con-
sidered real world movement scenario. These usually consist
of positional data measured through some global position-
ing method such as the Global Positioning System (GPS),
or connectivity data based on WLAN or Bluetooth. By an-
alyzing these traces, more realistic mobility models can be
developed. In the literature, there are studies available on
trace analysis and trace-based modeling (e.g., [14,17,22,27]).
However, they mainly focus on connectivity traces and cam-
pus scenarios.

In this paper, we present and evaluate a new realistic
trace-based mobility model for first responder scenarios.
The focus is on ambulances. The model considers geographic
restrictions, such as streets and buildings, by incorporating
free publicly available map data.
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We structured the remainder of this paper as follows: Sec-
tion 2 gives an overview of related work. Then, we describe
the new mobility model (Section 3) and parametrize it based
on the trace analysis (Section 4). An evaluation at mobility
level is given in Section 5. We conclude the paper with a
summary of the main results and identify topics for future
work in Section 6.

2. RELATED WORK
One approach to realize geographic restrictions is using

map data. Map-based approaches are similar to graph-based
ones but maps offer much more detail and can therefore be
of much use for bigger sized and detailed movement graphs.
Representatives of this approach are Random Waypoint City
(RaWaCi) [19], the mobility model described in [18], and
Random Street (RaSt) [5].

RaWaCi takes the proprietary MapInfo format as input,
creates the corresponding movement graph and computes
the routing tables according to mean speed values included
in the data. The node movement is an adapted RWP move-
ment, where the nodes take the fastest route to the ran-
dom destination and pause at every crossing (graph node).
In [18], a mobility model is presented that supports Open-
StreetMap as well as GPS trace data. The mobile nodes
move on the computed graph based on random decisions
concerning pause times, speed, and the edges to move on,
i.e., there is no target destination. RaSt makes use of a
location-based service to compute optimal routes from start
to destination and therefore does not need to pre-compute
a movement graph. The movement pattern is motivated by
RWP.

The CORPS mobility model [15] is an event-driven model
for first responder scenarios, but — in contrast to our model
— it focuses on the mobility of the first responders on-site
of the place of operation. It consists of an FR, event, and
interaction model. The FR model describes the first respon-
ders’ (FRs’) attributes, e.g., agency, role, and coverage re-
gion. FRs with the same role form a group and can perform
group movement. The event model maintains and schedules
events. Based on the event type, FRs are attracted to the
event or they avoid the corresponding region. The interac-
tion model takes care of the movement by letting the FRs
interact with the events, i.e., by taking the event type into
account.

In conclusion of this section, none of the described mo-
bility models is suitable for modeling ambulance movement.
The map-based models are too general and lack the abil-
ity to coordinate the nodes which is crucial for the timely
arrival of the ambulances at the accident site.

3. DISPATCHED AMBULANCE MODEL
In this section, we describe the new map-based mobility

model for first responder scenarios. The new model real-
izes the movement of ambulances by modeling the dispatch
process. Therefore, we call it the Dispatched Ambulance
(DiAm) model. The structure of this section is as follows:
First (Section 3.1), we introduce the dispatch process which
is incorporated by the DiAm model. The algorithm for
generating the ambulances’ movement is introduced in Sec-
tion 3.2. In Section 3.3, we describe the different model
parameters.

Dispatch ambulance

Drive to place of operation

Treat casualties

Transport casualties

Patient admission at hospital

Drive to station

incoming emergency call

departure from station

[no casualties / false alarm] [arrival at place of operation]

operationally ready

[consecutive operation]

[no consecutive operation]

[transport indication]

[no transport indication]

arrival at hospital

Figure 1: Activity diagram of the dispatch process

3.1 Dispatch Process
First responders try to keep the response times, i.e., the

time span between answering an emergency call and the ar-
rival of an ambulance at the corresponding place of opera-
tion, as low as possible. Therefore, an efficient way of co-
ordinating the ambulances is required, which is achieved by
the dispatch process (cf. [12, 13]).

Fig. 1 shows the different actions of the dispatch process
in an UML activity diagram. The process starts with an in-
coming emergency call in the emergency dispatching center.
In this call, among others, the place of accident (place of op-
eration) is communicated. With this information, it can be
determined, which operationally ready ambulance is nearest
to the place of operation at this point in time. Here, the
typical metric of choice for the distance calculation is the
Euclidean distance. Then, the dispatched ambulance drives
to the place of operation on the fastest route.

If there are no casualties or it turns out to be a false alarm,
the ambulance is immediately considered as operationally
ready and returns to its home station. Otherwise, after the
arrival at the place of operation, the casualties are treated. If
a transport of casualties is necessary, they are brought to the
next hospital with free capacity. In rare cases, casualties are
driven to a special surgery or even to their home. After the
casualties have been delivered to the transport destination,
the dispatched ambulance returns to its home station.

If there is a consecutive operation, the ambulance is dis-
patched on the way back to the station and drives to the
new place of operation right away. Otherwise, the ambu-
lance arrives at its home station and is idle until the next
operation.

3.2 Movement Generation Algorithm
The DiAm mobility model realizes the dispatch process

as follows (cf. Algorithm 1): At the beginning of the sim-
ulation, each ambulance (mobile node) starts at its previ-
ously designated home station (line 3). After an emergency
call idle time ECall IDLE, a place of operation with co-
ordinates within the simulation area is generated (ll. 5-6).
Then, with respect to a given metric, an ambulance with
minimal distance to the place of operation is chosen (l. 7).
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Figure 2: Segments approximating the course of the street

This may be an ambulance waiting at the station as well as
an ambulance on its way back from a previous operation.
In case of multiple dispatch candidates, the ambulance with
the lowest index is selected. Next, this dispatched ambu-
lance drives to the place of operation on an optimal (fastest
or shortest) route from its current position to the destina-
tion computed on the basis of the road network (ll. 8-9). We
use OpenRouteService (ORS) [24] for the route computation
(for details, see [5]).

When the dispatched ambulance has arrived, a pause of
length PlaceOfOp IDLE models the idle time (of the am-
bulance vehicle) at the place of operation (l. 10). There-
after, a transport destination is selected with probability
pCasualtyTransport (l. 11). This is a hospital with probabil-
ity pTDisHospital and a randomly selected destination other-
wise (ll. 12-15). We initially pull the positional data of all
hospitals within the simulation area from OpenStreetMap
(OSM) [11]. Based on this list of hospitals, we choose the
one that is nearest to the place of operation according to an
initially defined distance metric (l. 13). In the real world, the
free capacity of the hospital is checked first, but we do not
consider this in our model as the added complexity would
outweigh the benefits. The selection of the destination is
again followed by the computation of an optimal route and
the drive to the transport destination (ll. 16-17). After the
idle time at the transport destination, TranspDest IDLE,
has elapsed, the dispatched ambulance returns to its home
station (ll. 18-21). If a transport of casualties is not nec-
essary (probability 1 − pCasualtyTransport), the ambulance
directly drives from the place of operation to its home sta-
tion.

From the time when the ambulance drives from the sta-
tion to the place of operation until such time as it starts to
return to the station (from the place of operation or trans-
port destination), it is not operationally ready. Only oper-
ationally ready ambulances can be dispatched in case of an
emergency. Therefore, a consecutive operation occurs if and
only if the ambulance is on its way back to the home station
and it is nearest to the place of operation corresponding to
the new emergency call.

3.3 Model Parameters
With the general idea of the DiAm model described, we

will now go into more detail by describing the different pa-
rameters of the model (for an overview, see Table 1).

The EPSGCode parameter specifies the European
Petroleum Survey Group (EPSG) code (cf. [23]) of

Algorithm 1: Pseudocode for DiAm

/* initialization: */
1 t← 0;
2 forall mobile nodes i do
3 ~pi(t)← homeStation(i);

/* main loop */
4 while t < T do
5 t← t + ECall IDLE;
6 ~pO ← generatePlaceOfOperation();
7 i← getNearestReadyAmbulance( ~pO);
8 WO ← computeOptimalRoute(~pi(t), ~pO);

/* i drives to place of operation */
9 addRouteWaypoints(i, WO);

10 t← tO + PlaceOfOp IDLE with arrival time tO at ~pO;
11 if rand() ≤ pCasualtyTransport then
12 if rand() ≤ pTDisHospital then
13 ~pTD ← getNearestHospital( ~pO);
14 else
15 ~pTD ← generateTransportDestination();

16 WTD ← computeOptimalRoute( ~pO, ~pTD);
/* i drives to transport destination */

17 addRouteWaypoints(i, WTD);
18 t← tTD + TranspDest IDLE with arrival time

tTD at ~pTD;

19 WH ← computeOptimalRoute(~pi(t), homeStation(i));
/* i drives to home station */

20 addRouteWaypoints(i, WH);
21 t← tH with arrival time tH at homeStation(i);

the input coordinates. These have to be based on a
projected Coordinate Reference System (CRS) such as
UTM, since the model assumes Euclidean distances.

As mentioned earlier, we use OSM as a source for map
data. In order to select a specific area of the map, a bound-
ing box has to be defined with the MapBBox parameter. Fur-
thermore, this parameter expects a factor λ ∈ R≥0 that
specifies the relative size of an extra margin. We use this
extra margin to account for routes that, in part, lie outside
of the bounding box. These can result from the optimal
route computation, especially if fastest routes, e.g., main
roads and highways, are chosen.

In the domain of first responders, the ambulances are as-
signed a home station where they idle until they are dis-
patched. The locations of the different stations within the
considered part of the map can be specified with the Sta-

tions parameter. Furthermore, the number of ambulances,
that are assigned to a station, is set with the NumberOfAm-

bulances parameter. If this parameter is not specified by
the user, the total number of ambulances is shared equally
by all stations.

On the route to the destination, the ambulance drives
at a fixed speed for each street segment (cf. Fig. 2).
The speed value is uniformly chosen from the interval
[speedmin, speedmax] which can be specified with the Speed

parameter. The idea behind this speed selection is that in
reality, an ambulance is usually prevented from driving at
a constant speed due to congested traffic. Furthermore, we
decided not to model pauses on the way to the destination,
since this would also be unrealistic with respect to ambu-
lance movement.

The position calculation of the place of operations can
be either trace- or random-based, defined by the Position-

CalcMethod parameter. In case of a trace-based calculation,
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Parameter Meaning

EPSGCode EPSG code of the input coordinates
MapBBox Coordinates of the bounding box;

factor for extra margin due to routing
Stations Coordinates of the stations

NumberOfAmbulances Number of available ambulances for
each station

Speed Speed interval [speedmin, speedmax]
PositionCalcMethod Method for calculating place of

operation positions
ORSDistanceMetric Metric to use for route computation

DispatchDistanceMetric Metric to use for distance calculation
in the dispatch process

ConsecutiveOperations Turn consecutive operations on or off
MeshNodeDistance Distance of two neighboring mesh

nodes on the grid

Table 1: Parameters of the DiAm model

this parameter expects a CSV file containing a list of co-
ordinates. Based on this list, DiAm uniformly chooses a
position for a place of operation. Otherwise, if the user sets
the calculation to a purely random one, a position is uni-
formly chosen within the simulation area. Since we need a
valid destination for ORS, i.e., a position in the proximity of
a street, we draw a random position until we have one that
fullfils this criterium.

ORS can compute a fastest or shortest route to the des-
tination. In DiAm, this option is provided by the ORSDis-

tanceMetric parameter. Furthermore, we utilize this dis-
tance metric for the calculation of the distances considered
when choosing a nearest ambulance to be dispatched as well
as when choosing the nearest hospital. Apart from these
two, the third option for the DispatchDistanceMetric pa-
rameter is to use Euclidean distances which is also the metric
used in real world ambulance scenarios. It should be noted
at this point that ORSDistanceMetric and DispatchDis-

tanceMetric are independent from each other, i.e., the lat-
ter is only used for choosing a nearest ambulance or hospital,
not for route computation.

Further control of the ambulance movement is given with
the ConsecutiveOperations parameter. As the name im-
plies, this parameter toggles the use of consecutive opera-
tions. If enabled, ambulances on the way back to the sta-
tion are dispatched directly from their current position if
they are closest to the place of operation at the considered
simulation time. As a result, other ambulances potentially
wait longer at the station till their next operation.

If the simulation is supposed to realize a mesh network,
the user can specify static mesh nodes in addition to the
dynamic ambulance nodes with the MeshNodeDistance pa-
rameter. Even though the static nodes are not part of the
movement scenario generation, we think this option could be
useful, since these nodes do not need to be specified manu-
ally in the simulator of choice. The mesh nodes are placed
according to a grid, where the parameter defines the distance
between two neighboring mesh nodes. Kraaier et al. [19] pro-
posed a method that strategically places the mesh nodes on
street crossings. Using this method, the radio range of the
mesh nodes highly depends on the considered road network.
Other possible methods could minimize the number of mesh
nodes by assuming a fixed radio range. Using a more effi-
cient strategy to place the mesh nodes is part of our future
work.

4. PARAMETRIZATION
In Section 3.2, we introduced some parameters which we

now want to assign values to by statistically analyzing the
trace data described in Section 4.1. Parameters to consider
are the three different IDLE times which we cover in Sec-
tion 4.2. In Section 4.3, we examine the remaining parame-
ters, i.e., the probabilites concerning the transport of casu-
alties.

4.1 Trace Basis
The real world movement traces, on which the DiAm

model is based, were measured in Bonn, Germany. The dis-
trict of Bonn measures about 140km2 in size and is inhab-
ited by more than 317, 000 people. A total of 12 ambulances
are assigned to four stations which are tactically distributed
over the whole district.

The traces span from 2007/09 to 2008/10, i.e., we have a
long time period of 13 months. The traces contain data sets
for each first responder operation during that time period.
An operational data set consists of the ambulance ID num-
ber, several timestamps for different operational statuses,
and the global coordinates of the place of operation and
transport destination, if applicable.

Obviously, using this data as a basis leads to a
parametrization tailored to first responder scenarios in
Bonn. But on the other hand, this way the model already
includes a parametrization based on a thorough analysis.
Furthermore, one does not have to bother with trying to
obtain these data sets which are not available to the public.

4.2 IDLE Time Fitting
The simplest method for selecting values for the emer-

gency call, place of operation and transport destina-
tion IDLE times (ECall IDLE, PlaceOfOp IDLE, and
TranspDest IDLE, respectively) is to use the empirical dis-
tribution given by the operational data. But since we want
our mobility model to be self-contained, i.e., independent of
scenario-specific operational data, we use well-known distri-
bution functions by performing a fitting of the IDLE times.
For this purpose, we consider the time series

(i) (ECall IDLEi)1≤i≤I−1,

(ii) (PlaceOfOp IDLEi)1≤i≤I , and

(iii) (TranspDest IDLEi)1≤i≤I ,

where I > 28, 000 denotes the total number of operational
data sets.

As already mentioned above, the operational data we use
for our analysis was traced for a time period of 13 months.
We use the first 11 months as a basis for the fitting and the
last two months for validating the results of the fitting.

Stationarity and Independency

For the fitting, stationarity of the considered time series is a
precondition. We are aware of the formal mathematical def-
inition of stationarity. However, the time series we consider
in this paper are non-stationary by their very nature, since
they depend on the time of day. For the performance evalu-
ation, high network traffic periods are typically the ones of
interest. Thus, we need some kind of steady state for the
performance evaluation during these periods. Therefore, we
consider a weaker definition of stationarity: We sorted the
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Figure 3: Boxplots of the IDLE time series

samples according to the time of day (scaled to 0.5h) and
show the corresponding boxplot. We consider a time series
as stationary or steady state if the confidence intervals of the
medians overlap and the interquartile ranges do not diverge
significantly. Furthermore, we dropped outliers according to
a threshold which we chose as a multiple of 3600s = 1h for
the different time series.

None of the three different time series proved to be steady
state over the whole range [0, 23.5] (see Fig. 3). Therefore,
we extracted a time range for each time series that fulfills
the above-mentioned critera and still contains as many sam-
ples as possible. Also, we tried to extract ranges that do
not differ from each other too much. The results of this
extraction are summarized in Table 2. The ECall IDLE

time series (Fig. 3a) shows significant differences between
night- and daytime, i.e., at night, there were much less emer-
gency calls. We extracted the interval [8.5, 22] and dropped
samples with a value above 7200s. The PlaceOfOp IDLE

time series (Fig. 3b) shows less fluctuation between day and

IDLE steady state outlier

time series interval threshold

ECall IDLE [8.5, 22] > 7200s
P laceOfOp IDLE [10, 23] > 3600s
TranspDest IDLE [6.5, 18] > 3600s

Table 2: Choice of steady state extracts

IDLE Distribution MLE parameter K-S

time series distance

ECall

exponential rate = 0.001028745 0.0169

log-normal
meanlog = 6.27694

0.0671
sdlog = 1.326982

gamma
shape = 5.813777

0.2955
rate = 0.01

weibull
scale = 961.2075108

0.0099
shape = 0.9758523

PlaceOfOp

exponential rate = 0.0009717898 0.2178

log-normal
meanlog = 6.7441247

0.0715
sdlog = 0.7418827

gamma
shape = 8.985656

0.1729
rate = 0.01

weibull
scale = 1156.293778

0.0300
shape = 1.827563

TranspDest

exponential rate = 0.0009850198 0.2665

log-normal
meanlog = 6.753413

0.1176
sdlog = 0.742864

gamma
shape = 9.064934

0.1342
rate = 0.01

weibull
scale = 1139.126282

0.0561
shape = 1.973181

Table 3: Results of the IDLE time series fitting

night, but still we had to extract the time range [10, 23]
and dropped samples with values > 3600s. Fig. 3c shows
that also for the transport destination, the time of day does
not have much influence on the IDLE time. Here, we chose
the range [6.5, 18] and dropped all samples having a value
> 3600s.

After checking for stationarity, we need to check the time
series for independency. For this purpose, we checked the
autocorrelations of the time series. The autocorrelation co-
efficient does not significantly deviate from 0. All of the
three time series hold the independency property.

Fitting

Both preconditions for fitting time series (stationarity and
independency) have been checked. Now, we describe the
fitting itself. We use the commonly applied Maximum Like-
lihood Estimation (MLE) (see e.g., [21]) for this purpose.

As candidates for the fitting, we chose the exponential,
lognormal, gamma, and Weibull distributions. In order to
decide which of the fitted distributions can represent the
empirical data best, we also performed goodness-of-fit tests
with the Kolmogorov-Smirnov (K-S) test (cf. [21]). The K-S
test compares the Empirical Cumulative Distribution Func-
tion (ECDF) with the Cumulative Distribution Function
(CDF) of the fitted distribution by calculating the maximal
distance between the function values of the ECDF and CDF.
This is called the K-S distance and the smaller this distance
is, the better ECDF and CDF overlap and the better the
fitting.

The results of the MLE and K-S tests are summarized
in Table 3. For each of the three time series, the fit-
ted Weibull distribution provides the lowest K-S distance.
Apart from the K-S tests, we also evaluated the goodness of
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(c) TranspDest IDLE

Figure 4: Q-Q plots visualizing the goodness of the fitting

the fitting by visualizing it by means of Quantile-Quantile
(Q-Q) plots (cf. [21]), shown in Fig. 4: Here, the quantiles of
the fitted Weibull distribution are plotted against the quan-
tiles of the corresponding empirical distribution. An ideal
fitting would be a diagonal Q-Q plot (represented by the
black reference line). Overall, the Q-Q plots prove that our
fitting can represent the empirical data quite well. Only the
tails of the plots differ significantly from the reference line.
This is caused by the outliers present in the steady state
extracts.

Validation

The purpose of the validation is to show whether the data
used as basis for the fitting (first 11 months of the whole
trace basis) is also valid for trace data obtained in the future.
We compared the fitted Weibull distributions to the trace
data of the last two months (2008/09-10). We used Q-Q
plots, where the fitted distribution is shown on the x-axis
and the empirical distribution based on the data of the last
two months is shown on the y-axis (see Fig. 5). The plots
prove that the fitting does not depend on the time period of
the trace data it is based on and therefore is also valid for
future traces.

4.3 Deciding on Casualty Transport
Now we calculate values for the remaining parameters

of the DiAm model, which are pCasualtyTransport and
pTDisHospital. The former one is the probability for the
event that casualties need to be transported from the place
of operation to some transport destination. We divide the
number of operations with a transport by the total number
of operations which yields

pCasualtyTransport := 0.537234,
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Figure 5: Q-Q plots for validating the fitting

Parameter Value

EPSGCode 31466
MapBBox (2572162.86193241, 5611326.02517925),

(2585684.45650920, 5627251.16926147),
0.5

Stations (2575916.82282699, 5623585.21380640),
(2580549.34257569, 5623094.03460189),
(2580788.77398661, 5617791.51749108),
(2573965.80486246, 5620552.20755086)

NumberOfAmbulances 4, 3, 3, 2
Speed [30, 120]km/h

MaxPause 7200s

Table 4: Fixed parameter values for Bonn scenario

i.e., about every second operation includes a casualty
transport. The destination of such a transport is usually
a hospital. How probable this case is, is defined by the
pTDisHospital parameter. We divide the number of trans-
port destinations in the trace data, which are hospitals, by
the total number of transport destinations and obtain

pTDisHospital := 0.953869,

i.e., in 95% of all transport cases, the ambulance drives to
the nearest hospital. Otherwise, a random transport desti-
nation is chosen.

5. EVALUATION
In this section, we evaluate and compare the DiAm model

to RaSt [5] and RWP at the mobility level in order to show
the impact of the new model by analyzing the movement
traces. For this purpose, we implemented the DiAm model
by extending the mobility scenario generation tool Bonn-
Motion [1]. We chose RWP as a base line reference model
and RaSt as a map-based variant of RWP. For similar con-
ditions among the three models, we set the MaxPause value
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Figure 7: Boxplot of the route lengths

the choice of the places of operation has a significant impact
on the street distribution.

Comparing the different routing metrics, for RaSt it can
be seen that in case of fastest routes (Fig. 6f), main roads
and highways are used more frequently than others. In con-
trast to this, shortest routes (Fig. 6e) result in a more uni-
form distribution with more details in the city center. This
effect cannot be seen as clearly for DiAm movement (com-
pare Fig. 6a with 6b, and 6c with 6d). The dispatch process
always chooses a node which is closest to the place of oper-
ation and therefore most routes taken are short. However,
the impact of the ”fastest” metric on the street distribution
is only significant if the routes are long on average.

The main characteristic of DiAm can be observed if the
street distribution, especially for the empirical generation
(Fig. 6c and 6d), is compared to RaSt (Fig. 6e and 6f). In
case of DiAm, the distribution has four centers which are the
stations specified by the Stations parameter. The reason is
that the dispatch process leads to routes that are mainly in
the proximity of these stations.

5.2 Route Length
The route length is the total length of all street segments

(cf. Fig. 2) from source to destination position. Fig. 7
depicts the distribution of the route lenghts in form of a
boxplot for all parameter constellations. It confirms that, in
general, the routes are shorter for DiAm than for RaSt and
RWP. Obviously, the dispatch process effectively optimizes
the distances. Furthermore, the empirical generation yields
shorter route lengths than the random generation, which
supports our observation in the last section concerning the
street distribution.

5.3 Pause Time
Pause times of the mobile nodes give information about

how long they idle at a position. Thus, long pause times in-
dicate low mobility. The boxplot in Fig. 8 shows the pause
time distribution for each parameter constellation using a
logarithmically scaled y-axis. Two conclusions can be drawn
from this plot: The different parameters of DiAm do not
significantly impact the pause times. Apart from that, the
pause times of the random-based models are consistently
longer than for DiAm, which is due to the different distri-
bution functions.

5.4 Generation Runtime
The final metric we consider in this paper is the runtime

for generating mobility scenarios with BonnMotion. For this
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Figure 8: Boxplot of the pause times
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Figure 9: Boxplot of the mobility generation runtime

purpose, we created 100 replications with a simulation time
of 12h each. We used Java 1.6 under Kubuntu 8.04 on a
conventional PC with a Pentium IV 2.8GHz and 1024MB
400MHz DDR-RAM.

Fig. 9 shows a boxplot of the mobility generation runtime.
On average, it takes less than a minute to generate a mo-
bility scenario trace. The most significant impact can be
observed for the dispatch distance metric. If the Euclidean
distance is used, the runtime for DiAm scenarios is around
10s. Otherwise, it is around 30 or 60 seconds, depending
on the type of place of operation generation. This is the
result of the distance computation for choosing an ambu-
lance to dispatch, which has to be performed lots of times
during the dispatch process. Every single distance compu-
tation based on the shortest or fastest route requires the
sending of a route request to ORS which is located on a re-
mote host. Since the dispatch distance metric does not have
a remarkable impact on the other metrics examined above,
we suggest to fix this parameter to Euclidean distance.

As we pointed out in Section 5.2, the average route length
is shorter for empiric generation of places of operation. The
time it takes to compute a shorter route is less than for
longer routes. This is also reflected in the boxplot: The
runtimes are shorter if the generation of places of operation
is based on the empirical data.

Comparing to RaSt, the runtime overhead is negligible for
Euclidean distance computation since RaSt also communi-
cates with a remote host. RWP scenarios take around 0.2s

to generate, yielding a DiAm runtime overhead factor of 50
(Euclidean distances). Clearly, this factor strongly depends
on the latency of the network link to the ORS server.
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6. CONCLUSION AND FUTURE WORK
In order to obtain credible performance evaluation results

in the simulation of wireless multi-hop networks, it is crucial
to model the mobile nodes’ movement in a realistic way. In
this paper, we have introduced the Dispatched Ambulance
model, a new realistic mobility model for first responder sce-
narios. It is based on trace analysis and considers geographic
restrictions with the help of free publicly available map data
provided by OpenStreetMap. The characteristic movement
pattern of ambulances essentially relies on the dispatch pro-
cess which is the main part of Dispatched Ambulance. For
computing optimal routes, we integrated the location-based
OpenRouteService.

We further analyzed the operational data provided by the
fire department of Bonn to parametrize the Dispatched Am-
bulance mobility model. This trace data includes data sets
for each first responder operation within a time period of
13 months. Furthermore, it allows for the calculation and
extensive fitting of different IDLE time series used in the
model. With the resulting standard distribution functions
of the fitting, the empirical distributions could be reflected
very well and the model was enabled to be self-contained.

The evaluation of the impact on different mobility met-
rics has shown that the model in general yields significantly
different movement traces compared to the random-based
models Random Street and Random Waypoint. Also, its
different parameters have shown a considerable impact on
the mobility metrics. Thus, overall, the Dispatched Ambu-
lance mobility model has proven to be valuable for modeling
node movement in first responder scenarios.

For future work, we plan to refine the random generation
of places of operation by considering arbitrary distributions.
We also want to generate mobility scenarios for other cities
to examine the general applicability of the model. Another
aspect we plan to refine is the algorithm for placing the mesh
nodes. Moreover, we want to perform extensive simulative
performance evaluations using the Dispatched Ambulance
model to substantiate its impact.
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