

Workshop on Grids, Clouds & Service Infrastructures 02 - 03 December 2009

IRMOS: The first step in real-time technologies for distributed systems

Dimosthenis Kyriazis

National Technical University of Athens

dkyr@telecom.ntua.gr

Outline

- Introduction
 - IRMOS at a glance
 - IRMOS Vision
- Behind the scenes
 - IRMOS Story
 - Two Phases Approach
 - Architecture Overview
- IRMOS Control Loops
 - Application Control
 - Environment Control
 - Virtualization Control
- Demonstrators
- Research Challenges
- Need for Standardisation

Summary

02-03/12/2009, S. Antipolis

Workshop on Grids, Clouds & Service Infrastructures

At a Glance

- Duration
 - 36 months (Started on February 2008)
- Effort
 - 1.133 PM
- Budget
 - Total Cost: 12,6 M€
 - EC funding: 7,9 M€, under FP7, ICT-2007.1.2 Service and Software Architectures, Infrastructures and Engineering

Consortium

 11 partners from industry and academia belonging to 6 European countries (DE, UK, GR, IT, NO, ES)

Service Oriented Infrastructures

Today

- Numerous success stories
 - Amazon EC2
 - Sun Caroline
 - □ ...

Tomorrow

- Vision of future SOIs
 - **D** Facilitate real-time interactivity
 - Provide QoS guarantees
 - Are economically viable
 - Not only provide resources but also supporting tools to make the development and deployment of applications is easy
- This is the territory of IRMOS

02-03/12/2009, S. Antipolis

Workshop on Grids, Clouds & Service Infrastructures

The IRMOS Vision

- Main outcome of the project:
 - Service Oriented Infrastructure, which allows the adoption of interactive real-time applications
- To make it feasible we have a set of <u>challenges</u> to face:
 - Enabling real-time attributes at various levels of the infrastructure (network, storage, processing, application)
 - Providing QoS Guarantees
 - Achieving automated SLA Negotiation
 - Mapping between high-level application terms and finegrained resource-level attributes
 - Developing specification languages to describe real-time applications
 - Provisions of supporting tools to develop applications with predictable performance

02-03/12/2009, S. Antipolis

Workshop on Grids, Clouds & Service Infrastructures

IRMOS SOI

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures

Outline

□ Introduction

- IRMOS at a glance
- IRMOS Vision

Behind the scenes

- IRMOS Story
- Two Phases Approach
- Architecture Overview
- IRMOS Control Loops
 - Application Control
 - Environment Control
 - Virtualization Control
- Demonstrators
- Research Challenges
- Need for Standardisation

Summary

02-03/12/2009, S. Antipolis

Workshop on Grids, Clouds & Service Infrastructures

The Two Phases Approach

Architecture overview

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures

Outline

□ Introduction

- IRMOS at a glance
- IRMOS Vision

Behind the scenes

- IRMOS Story
- Two Phases Approach
- Architecture Overview

IRMOS Control Loops

- Application Control
- Environment Control
- Virtualization Control
- Demonstrators
- Research Challenges
- Need for Standardisation

Summary

02-03/12/2009, S. Antipolis

Workshop on Grids, Clouds & Service Infrastructures

IRMOS Control Loops

- •Identify critical interdependencies and resources that can lead to bottlenecks in order to improve service performance
- Workflows and services that have measurable and predictable behaviour

Application Control

Environment Control

- Framework Services (set of tools)
- Modelling, Analysis and Planning environment
- •Estimate and optimise resource provisioning needs necessary to enact a workflow according to SLA guarantees
- •Estimate service performance and responsiveness
- Discover exceptional behaviour that is likely to break QoS guarantees

•Intelligent Service Oriented Network Infrastructure (ISONI)

- •Resource (computing, storage, network) management
- •Allocation of link resources and provisioning of connectivity
- Individual QoS guarantees for coexisting services on a shared transport medium
- •Live migration of services between Execution Environments
- •Temporal isolation of services running on the same resource

Monitoring

Virtualization Control

Modelling, Negotiation, Reservation, Re-negotiation

12

Demonstrators

- Collaborative Digital Film Postproduction
- Virtual and Augmented Reality
- Interactive collaborative e-learning

02-03/12/2009, S. Antipolis

Workshop on Grids, Clouds & Service Infrastructures

Research Challenges

- Cross Boundaries Guarantees in Virtualized Infrastructures
 - Services running on resources of different virtualized infrastructures and therefore also different network and organizational domains
- Decision Support
 - Interlinking cost analysis, accounting and the capabilities required by the business activity to have a better risk analysis
 - Not only technical parameters will govern the decision process but also business ones (mainly cost but also business relations, internal policies, etc)
- Compatibility between Cloud Platforms
 - Compatibility and interoperability will also make feasible the migration from one platform / virtual infrastructure to another
 - Standardisation can serve as a means...

02-03/12/2009, S. Antipolis

We need to Standardise...

Summary

IRMOS Team is creating a platform that enables the real-time execution of interactive multimedia applications.

 We have already very promising results, an initial IRMOS Integrated Prototype will be ready in February 2010.

Virtualized	Management	Service	Schemas
Infrastructure	Systems	Engineering Tools	
ProcessingStorageNetwork	 SLA Management Workflow Management Metering & Monitoring 	 Composition Studio Modeling, Analysis & Planning Benchmarking & Mapping 	 Workflow Description Virtual Service Network Description SLAs Application Technical

02-03/12/2009, S. Antipolis

Workshop on Grids, Clouds & Service Infrastructures

Thank you!

Dimosthenis Kyriazis

National Technical University of Athens

dkyr@telecom.ntua.gr

Further Information <u>http://www.irmosproject.eu</u>

The research leading to these results has received funding from the EC Seventh Framework Programme FP7/2007-2011 under grant agreement n° 214777