Data Centre Server Efficiency Metric - A Simplified Effective Approach

Henry ML Wong
Sr. Power Technologist
Eco-Technology Program Office
Agenda

- The Elephant in your Data Center
- Calculating Server Utilization Effectiveness (SUE)
- Using SUE to manage Server Refresh
- Looking Ahead
The Elephant in your Data Center
The Elephant in the Data Center

- The Data Center is an Information Factory
- It uses energy to process information
- Energy is used by the IT equipment & the factory
- ... but how efficient is the equipment?
Spotting the Elephant

- How **efficient** is my data center?

Inefficient IT equipment can be the Elephant in your Data Center
PUE is Part A of the Answer

• PUE* measures the efficiency of data center infrastructure (UPS, CRACs, etc.)

\[
PUE = \frac{\text{Energy Consumed by the Data Center}}{\text{Energy Consumed by IT equipment}} = \frac{\text{IT Energy + nonIT Energy}}{\text{IT Energy}}
\]

Efficient Data Center Energy Usage (PUE)

* PUE: Power Usage Effectiveness
SUE is Part B of the Answer

- SUE measures the Effectiveness of Data Center Performance (Work Output)
- Uses “Moore’s Law” as a proxy for performance metrics & efficiency
- SUE is a ratio of ACTUAL to IDEAL

\[
\text{Current Performance} \approx \sum_{\text{servers}} 0.707^{\text{Age}} \\
\text{Ideal Performance} \approx \sum_{\text{servers}} 0.707^{\text{Age}=0} = N_{\text{servers}}
\]
SUE: Server Utilization Effectiveness

- Formula balances ease of use and precision
 - Not a substitute for actual measure of business metrics
- Consistent with the Green Grid PUE metric
 - \((1.0 = \text{ideal}, \text{larger number worse})\)
- Simple to calculate
- Results are actionable and interpretable

\[
SUE = \frac{N}{\sum_{\text{Servers}} 0.707^{\text{Age}}}
\]

Higher SUE (less effective) is using more Servers to deliver the same work output
SUE Tracks Actual Benchmark Results

- All data from SPEC.ORG published performance results of 2S systems
- Dashed curve is an average of 5 benchmarks

\[
\text{SUE} = \frac{1}{0.707^{\text{AGE}}}
\]

SUE is Easy & Accurate metric of compute efficiency

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. Configurations: [describe basic config]. For full configuration information, please see backup. For more information go to http://www.intel.com/performance
Practical Example

Age Distribution
- 64%
- 32%
- 4%

Energy Consumption
- 60%
- 35%
- 5%

Performance Capability
- 93%
- 4%
- 3%

Older Server population consumed 60% of the energy, delivered only 4% Relative Performance Capability

Data collected in 2011 at a Fortune 100 company;
courtesy of William Carter & John Kuzma Intel
Calculating Server Utilization Effectiveness (SUE)
Calculating SUE of the IT Inventory

<table>
<thead>
<tr>
<th>Purchase Timeframe</th>
<th>Age</th>
<th>0.707^{Age}</th>
<th>Population</th>
<th>Σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>0</td>
<td>1.0</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>2010</td>
<td>1</td>
<td>0.71</td>
<td>200</td>
<td>142</td>
</tr>
<tr>
<td>2009</td>
<td>2</td>
<td>0.50</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>2008</td>
<td>3</td>
<td>0.35</td>
<td>200</td>
<td>70</td>
</tr>
<tr>
<td>2007</td>
<td>4</td>
<td>0.25</td>
<td>200</td>
<td>50</td>
</tr>
<tr>
<td>N_{servers}</td>
<td></td>
<td></td>
<td>1000</td>
<td>562</td>
</tr>
</tbody>
</table>

\[
SUE = \frac{\sum_{\text{servers}} N_{\text{Servers}}}{\sum_{\text{servers}} 0.707^{\text{Age}}} = \frac{1000}{562} = 1.78
\]

Actual : Ideal Ratio of Capability is 1.78
To understand how many NEW servers are required to replace old servers, set SUE = 1, and solve for N

\[N_{\text{New Servers}} \approx \sum \text{Servers to be replaced} \times 0.707^{\text{Age}} \]

Back to our example:

<table>
<thead>
<tr>
<th>Purchase Timeframe</th>
<th>Age</th>
<th>0.707^{Age}</th>
<th>Servers to be replaced</th>
<th>New Servers Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>2011</td>
<td>1</td>
<td>0.71</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>2010</td>
<td>2</td>
<td>0.5</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>2009</td>
<td>3</td>
<td>0.35</td>
<td>200</td>
<td>70</td>
</tr>
<tr>
<td>2008</td>
<td>4</td>
<td>0.25</td>
<td>200</td>
<td>50</td>
</tr>
</tbody>
</table>
Applying SUE to the IT Inventory

To understand how many NEW servers are required to replace old servers, set $SUE = 1$, and solve for N

$$SUE = \frac{N_{Servers}}{\sum_{Servers} 0.707^{Age}}$$

<table>
<thead>
<tr>
<th>Purchase Timeframe</th>
<th>Age</th>
<th>0.707^{Age}</th>
<th>Baseline Population</th>
<th>Refreshed Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>0</td>
<td>1</td>
<td>200 (200)</td>
<td>420 (420)</td>
</tr>
<tr>
<td>2011</td>
<td>1</td>
<td>0.71</td>
<td>200 (142)</td>
<td>200 (142)</td>
</tr>
<tr>
<td>2010</td>
<td>2</td>
<td>0.5</td>
<td>200 (100)</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>3</td>
<td>0.35</td>
<td>200 (70)</td>
<td>0</td>
</tr>
<tr>
<td>2008</td>
<td>4</td>
<td>0.25</td>
<td>200 (50)</td>
<td>0</td>
</tr>
<tr>
<td>$N_{servers}$</td>
<td></td>
<td></td>
<td>1000 (562)</td>
<td>620 (562)</td>
</tr>
<tr>
<td>SUE</td>
<td></td>
<td></td>
<td>1.78</td>
<td>1.10</td>
</tr>
</tbody>
</table>

SUE calculation shows ability to reduce this IT population by **38%**
Total Efficiency* is a function of the efficiency of Servers (SUE) in transforming energy into processed information, AND the efficiency of the infrastructure (PUE) to delivery the energy and remove the heat byproduct.

\[
\text{Overall Efficiency} = f(\text{PartA, PartB}) = SUE \times PUE
\]

* Efficiency through provisioning does not include utilization
Using SUE to Manage Refresh
Using SUE in Project Comparisons

<table>
<thead>
<tr>
<th>Current Facility</th>
<th>Scenario - Improve PUE</th>
<th>Scenario - Improve SUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing DC with 500KW critical load. Raised Floor area utilizes hot and cold aisle layout, perimeter CRAC units</td>
<td>Facility upgrade with added air containment, ducting, VFD air movers & instrumentation</td>
<td>Same as Current</td>
</tr>
<tr>
<td>1000 Servers, 0 to 8 yrs old, Avg age of equipment is 4 yrs old</td>
<td>1000 Servers, 0 to 8 yrs old, Avg age of equipment is 4 yrs old</td>
<td>50 new servers @ $8,000 ea;</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PUE</th>
<th>SUE</th>
<th>PUE x SUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>2.5</td>
<td>4.5</td>
</tr>
<tr>
<td>1.6</td>
<td>2.5</td>
<td>4.25</td>
</tr>
<tr>
<td>1.8</td>
<td>1.78</td>
<td>3.2</td>
</tr>
</tbody>
</table>

- **Baseline**
 - 11% Energy Reduction ($88K annual savings) ($2M investment)
 - 29% Energy Reduction ($144K net cost in YR 1 and $80K savings annually)

SUE provides data driven investment decisions; Compares Infrastructure & IT improvements

Assumptions:
- $2M project cost is not based on actual project costs
- Energy calculations assumed $0.10 KW-Hr
- Energy reduction estimates based on qty of servers
- 8yr to 5 yr policy change requires 22 add’l servers in yr 2-5
Using SUE to Project IT Efficiency

- March 2010: 7272 servers, SUE at 2.1, & IT growth of 45% projected
- Refresh accelerated with removal of systems > 5 yrs old
- UPS load decreases, extends UPS capacity through 2014

SUE calculation projects the required refresh and server population necessary to meet demand
Using SUE for Refresh Policy Comparisons

Impact of One Year Policy Change
- $4.2M CapEx avoidance
- $90K OpEx savings
- 12% less
 - floor space
 - Servers
 - Racks
 - NW routers

Assumptions:
Baseline is 7500 Servers following a 5 year refresh policy
$14/watt for new construction, 2.0 PUE, $.08 KW-hr, 6% interest on capital, 10 yr facility amortization, 6 yr network equip amortization, $3500/server avg. purchase price, 285 watts avg. energy per server, 30sq ft per rack, server population normalized based on SUE calculation.
Looking Ahead
SUE and benchmark correlation error is higher for shorter periods that span new processor & technology introductions:

SUE change over 8 months is $= \frac{1}{0.707^{0.66}} = 1.26$

Avg. Benchmark change between Apr’11 and Dec’11 = 1.73

SUE is best used for longer term trends
SUE a look ahead

\[SUE \equiv \frac{Ideal \ Server \ Performance}{Actual \ Server \ Performance} \]

<table>
<thead>
<tr>
<th>Maturity Levels</th>
<th>Performance Measure</th>
<th>Investment</th>
<th>Requires</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Measure</td>
<td>Moore’s Law proxy</td>
<td>Benchmark Data</td>
<td>Productivity Proxy</td>
<td>Actual Workload</td>
</tr>
<tr>
<td>Investment</td>
<td>A few hours</td>
<td>Days</td>
<td>Weeks</td>
<td>Months to years</td>
</tr>
<tr>
<td>Requires</td>
<td>Server Inventory</td>
<td>Server Performance</td>
<td>Specialized Software</td>
<td>Software development</td>
</tr>
<tr>
<td>Scope</td>
<td>Simplified assessment</td>
<td>Config & BM dependent</td>
<td>Very accurate assessment</td>
<td>Most accurate assessment</td>
</tr>
</tbody>
</table>

Increasing Efforts will Improve Accuracy
Wrap Up

• The Modern Data Center is an Information Factory
• The infrastructure and IT Equipment affect Efficiency
• SUE recognizes Moore’s Law as a proxy for performance metrics in the absence of your own business metrics
• Formula balances ease of use and precision
• SUE is a ratio of ACTUAL to IDEAL performance; no Units

• Overall Efficiency = \(f (\text{PartA, PartB}) = \text{SUE} \times \text{PUE} \)

What’s YOUR Number?
Thank You

Henry.L.Wong@intel.com
Q&A
Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. Go to: http://www.intel.com/products/processor_number.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

Intel, Sponsors of Tomorrow and the Intel logo are trademarks of Intel Corporation in the United States and other countries.

*Other names and brands may be claimed as the property of others.
Copyright ©2012 Intel Corporation.
Risk Factors

The above statements and any others in this document that refer to plans and expectations for the first quarter, the year and the future are forward-looking statements that involve a number of risks and uncertainties. Words such as “anticipates,” “expects,” “intends,” “plans,” “believes,” “seeks,” “estimates,” “may,” “will,” “should” and their variations identify forward-looking statements. Statements that refer to or are based on projections, uncertain events or assumptions also identify forward-looking statements. Many factors could affect Intel’s actual results, and variances from Intel’s current expectations regarding such factors could cause actual results to differ materially from those expressed in these forward-looking statements. Intel presently considers the following to be the important factors that could cause actual results to differ materially from the company’s expectations. Demand could be different from Intel's expectations due to factors including changes in business and economic conditions, including supply constraints and other disruptions affecting customers; customer acceptance of Intel’s and competitors’ products; changes in customer order patterns including order cancellations; and changes in the level of inventory at customers. Uncertainty in global economic and financial conditions poses a risk that consumers and businesses may defer purchases in response to negative financial events, which could negatively affect product demand and other related matters. Intel operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed or difficult to reduce in the short term and product demand that is highly variable and difficult to forecast. Revenue and the gross margin percentage are affected by the timing of Intel product introductions and the demand for and market acceptance of Intel's products; actions taken by Intel's competitors, including product offerings and introductions, marketing programs and pricing pressures and Intel's response to such actions; and Intel's ability to respond quickly to technological developments and to incorporate new features into its products. Intel is in the process of transitioning to its next generation of products on 22nm process technology, and there could be execution and timing issues associated with these changes, including products defects and errata and lower than anticipated manufacturing yields. The gross margin percentage could vary significantly from expectations based on capacity utilization; variations in inventory valuation, including variations related to the timing of qualifying products for sale; changes in revenue levels; product mix and pricing; the timing and execution of the manufacturing ramp and associated costs; start-up costs; excess or obsolete inventory; changes in unit costs; defects or disruptions in the supply of materials or resources; product manufacturing quality/yields; and impairments of long-lived assets, including manufacturing, assembly/test and intangible assets. The majority of Intel's non-marketable equity investment portfolio balance is concentrated in companies in the flash memory market segment, and declines in this market segment or changes in management's plans with respect to Intel’s investments in this market segment could result in significant impairment charges, impacting restructuring charges as well as gains/losses on equity investments and interest and other. Intel's results could be affected by adverse economic, social, political and physical/infrastructure conditions in countries where Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and fluctuations in currency exchange rates. Expenses, particularly certain marketing and compensation expenses, as well as restructuring and asset impairment charges, vary depending on the level of demand for Intel's products and the level of revenue and profits. Intel's results could be affected by the timing of closing of acquisitions and divestitures. Intel's results could be affected by adverse effects associated with product defects and errata (deviations from published specifications), and by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust and other issues, such as the litigation and regulatory matters described in Intel’s SEC reports. An unfavorable ruling could include monetary damages or an injunction prohibiting us from manufacturing or selling one or more products, precluding particular business practices, impacting Intel’s ability to design its products, or requiring other remedies such as compulsory licensing of intellectual property. A detailed discussion of these and other factors that could affect Intel’s results is included in Intel’s SEC filings, including the report on Form 10-Q for the quarter ended Oct. 1, 2011.

Rev. 1/19/12