
Niels Hoppe

13/09/2022

Keyword-Driven 
Simulation Testing for 
Open-Source Robotics



#UCAATTesting of Trustworthy Systems

Agenda

1) Motivation
a) Open-source Robotics
b) Acceptance Testing
c) Keyword-driven Testing

2) Challenges (and solutions)
1) Test Adaptation
2) Time
3) Space
4) Continuous signals

3) Conclusion



#UCAATTesting of Trustworthy Systems

Motivation: Open-Source Robotics

Robot Operating System (ROS)
Message-based middleware
Nodes provide and call services
Nodes publish and subscribe to topics

Gazebo simulator
3D simulator for ROS
Customizable through plugins



#UCAATTesting of Trustworthy Systems

Motivation: Acceptance Testing

Our motivation and goals for acceptance testing:
Lower test levels already covered for ROS (e.g. rostest for integration tests)
Enable domain experts to write and execute test cases
Automate test execution in simulation
Transfer test cases from simulation to real world



#UCAATTesting of Trustworthy Systems

Motivation: Acceptance Testing

In an acceptance test we want to ascertain that
some things happen

e.g., objects, in particular robots, reach certain positions and orientations
in a specific timeframe
in a specific order

other things DO NOT happen
e.g., collisions between objects, in particular robots

certain properties hold
e.g., distances between objects, alignment of objects
remain static or
follow a specific course



#UCAATTesting of Trustworthy Systems

Motivation:
Acceptance 
Testing



#UCAATTesting of Trustworthy Systems

Motivation: Keyword-driven Testing

Keyword-driven testing (KDT)
Test cases are sequences of test steps
Test steps are expressed through keywords
Good for interactive / event-driven / request-
response systems

e.g., user interfaces, apps, websites, 
communication protocols, …

Human-readable keywords well understood by 
domain experts
Different frameworks exist

e.g., Cucumber, Robot, …



#UCAATTesting of Trustworthy Systems

Challenges

When applying KDT to robotics and simulation, we faced challenges with
Test Adaptation: defining and accessing the test interface
Time: simulation time vs. wall-clock time
Space: position and orientation of objects
Continuous signals: stimuli and observations



#UCAATTesting of Trustworthy Systems

Test Adaptation

Custom library for the Robot Framework
Convenience keywords for ROS

Launch ROS launch configurations (roslaunch) 
and run ROS scripts (rosrun)
Read and write ROS parameters (rosparam)
Call ROS services (rosservice)

Gazebo specific keywords
Start, pause, reset simulation
Spawn, delete, inspect objects

More to come, available from GitHub:
hielsnoppe/robotframework-rosgazebolibrary

https://github.com/hielsnoppe/robotframework-rosgazebolibrary


#UCAATTesting of Trustworthy Systems

Time

There is a disparity between simulation time and wall-clock time
Expressed as the real-time factor (RTF) in Gazebo
The RTF fluctuates over time
RTF often < 1.0 due to low performance / high load
RTF > 1.0 when simulating at an accelerated tempo (on high performance device)

Possible solutions:
Check simulation time in a loop (naïve busy waiting)
Adaptive timeouts and intervals (less busy waiting, but still…)
Simulator plugin for timeouts and intervals



#UCAATTesting of Trustworthy Systems

Time: Simulator Plugin

Simulator plugin
Advertise four ROS services:

Set timeout (duration): timeout 
handle
Clear timeout (timeout handle)
Set interval (duration): interval 
handle
Clear interval (interval handle)

Advertise one ROS topic:
/timeouts_intervals

Publish respective handle whenever 
a timeout or interval is due

Keyword library
Subscribe to topic

Keywords
Wait {duration}

Call set timeout (duration)
Proceed when receiving handle

Repeat Every {duration}
Call set interval (duration)
Perform action when receiving 
handle



#UCAATTesting of Trustworthy Systems

Space

Check position and orientation of 
objects

Absolute (e.g., moving robots)
Relative to other objects (e.g., 
distances, alignments, collisions)

How to implement?
Service to request absolute object 
positions exists in Gazebo
tf2 library calculates relative 
positions and orientations
static_transform_publisher from 
tf2_ros monitors and publishes 
relative positions and orientations
Run such node for every watched 
relative position and subscribe to 
topic

Image source: http://wiki.ros.org/tf2

http://wiki.ros.org/tf2
http://wiki.ros.org/tf2_ros
http://wiki.ros.org/tf2


#UCAATTesting of Trustworthy Systems

Collisions

Keywords
Ignore Collision [qualifier]?
Fail On Collision [qualifier]?
Log Collision [qualifier]? [As {level}]?
Expect Collision [qualifier]
Where [qualifier] is

Between {group of links}
Involving {group of links}

How to implement?
Internal topic for collisions exists in 
Gazebo
Create Gazebo plugin to publish 
topic externally
Subscribe to topic, set listeners for 
conditions according to keywords



#UCAATTesting of Trustworthy Systems

Continuous stimuli and observations

How to express (continuous) change over time in a sequence of keywords?
Sample stimuli from mathematical functions
Trace observed properties and evaluate later
Register watchers on observed properties and react to specific events



#UCAATTesting of Trustworthy Systems

Continuous stimuli

Keywords
Sample {signal} From {function} At 
{interval}
Where {function} is a function (t: 
Time)  Any, e.g.,

Step: jump to value
Impulse: jump to value and back
Ramp (linear, sinus): transition to 
value over time
Periodic: modulate signal periodically
Custom functions?

Inspired by MTCD from Model 
Engineering Solutions

How to implement?
Custom ROS node or
parallel thread in test execution
To be determined!



#UCAATTesting of Trustworthy Systems

Continuous observations

Keywords
Trace {expression}: {watcher handle}
Log {condition} As {level}: {watcher 
handle}
Fail On {condition}: {watcher handle}
Expect {condition}: {watcher handle}
Relieve Watcher {watcher handle}
Where

{expression} is a function (s1: Signal, 
…, sN: Signal)  Any
{condition} is a function (s1: Signal, …, 
sN: Signal)  Boolean

How to implement?
Subscribe to respective topics
Evaluate expressions and conditions 
on every update
Unsubscribe topics when watchers 
are relieved



#UCAATTesting of Trustworthy Systems

Conclusion

Keyword-driven Simulation Testing for Open-Source Robotics
Basic functionality provided by open-source library
Some aspects benefit from simulator plugins, e.g.,

Simulation time-based timeouts and intervals
Spatial relationships via tf2 transforms

Advanced features still experimental, e.g.,
Collision checking
Continuous stimuli and observations



Any further questions?
Contact me:

niels.hoppe@fokus.fraunhofer.de


	Keyword-Driven Simulation Testing for Open-Source Robotics
	Agenda
	Motivation: Open-Source Robotics
	Motivation: Acceptance Testing
	Motivation: Acceptance Testing
	Motivation:�Acceptance Testing
	Motivation: Keyword-driven Testing
	Challenges
	Test Adaptation
	Time
	Time: Simulator Plugin
	Space
	Collisions
	Continuous stimuli and observations
	Continuous stimuli
	Continuous observations
	Conclusion
	Contact me:�niels.hoppe@fokus.fraunhofer.de

