

Back-to-back testing applied to distributed PLC

GUIGNARD Anais

13/09/2022

Context

R&D Project : Back-to-Back testing

- Multiple partners
 - CEA List
 - Schneider Electric
 - Systerel
- Industrial topics
- Public funders

This project has been supported by both the French State, through the program "Investing for the future", and the french regions

Industrial context

Testing of Trustworthy Systems

#UCAAT

Main considerations

- Deployment of a PLC solution based on IEC 61499
- Concerns about evaluation of the application design
 - Has the application been well designed ?
 - Does the implemented program behaves as designed ?

Project objectives

- Definition and measurement of relevant metrics
- Automatic allocation of the application in the candidate resources
- Automatic generation and execution of test sequences based on back-to-back principle

Based on distributed systems

- Application written without concern of devices
- Once written, allocation of the selected parts on different devices or resources

Application structure

- Network of Function Blocks that exchange both events and data
- Activation of FBs scheduled through events
- Each FB activated reads its input data, performs operation and emits output events and data
- Specific FBs allow to read external inputs and emit external outputs

IEC 61499 distinctive features

- Diversity of variables (bool, int, float, string, date, ...) and interfaces (dry contact, analogic, digital, ..)
- Event-based behavior (non-cyclic)
 - External events may occur within a processing
 - Possibly no stabilization
- Distributed architecture (non-determinist)
 - FB on different resources may evolve independently
 - No guaranty of input reading synchronism

B2BT: Test sequence generation

Testing of Trustworthy Systems

9th

B2BT: Test sequence execution

Testing of Trustworthy Systems

#UCAAT

Coverage criterion

Detects all possible observable fault on each variable assignation / logic operation according to the mutation library

Observability

• A fault is covered if its consequences are observable through the outputs

Precise input injection control

As the model represents the executed code, input injection must occur precisely to fit the expected behavior

Calculation power

• Precise models require more resources to evaluate the behavior

Pseudo-cyclic behavior

- Send input variables
- Wait for stabilization
- Collects output variables

Temporization and Clocks control

- Considered as external inputs
- Prevents undesired events during a test cycle

Input changes limitation

- Only inputs from the same resource can change at each step
- Temporization and clocks can only be triggered alone

ETSI

Test bench principle and realization

Scheduler (computer)

- Sends and receives I/O updates
- Compares the observed outputs with expected ones

Input / outputs

- Logic I/O directly through network connection
- Dry contact and analogic I/O through a converter device

Testing instrumentation

- Maintenance tool used to :
 - Trigger the input event after having updated all the input variables
 - Restrain and trigger temporization and cyclic FB

Testing of Trustworthy Systems

9th

Results

Application	FB Activated	Exchanges between PLC	Pending internal queue	Pending external queue
Example 1 PLC	19	1	2	1
Example 2 PLC	48	2	4	1

Difficulties

- Obfuscated FB (standard and private libraries)
- Non-cyclic behavior
- Great diversity of internal variable types
- Indeterminism of distributed architectures

Testing IEC 61499 standard

- Highly dependent of the conception tool
- Non-cyclic behavior increases the number of possible input stimulations
- Requires a high level of instrumentation (gray box at least)

B2BT with IEC 61499 standard

- Requires restrictions or instrumentation to reach a stable state between each test step
 - Restrictions leads to a combinatory explosion for sequence calculation
 - Instrumentation (One FB activation per step) leads to an explosion of the test sequence length

Any further questions?

Contact me guignard@systerel.fr

Application execution example

Event Queue : {(E0, FB0), (E1,FB2), (E1, FB3), (E2,FB4), (E3,FB4), E4, E4} Active FB : {FB1 -> FB2 -> FB3 -> FB4 -> FB4}

