
Stephan Schulz , Graham Rawlings

13.9.2022

Automatic log analysis:
Expert knowledge for
everyone!

#UCAATTesting of Trustworthy Systems

What we test at G+D Currency Technology

• Multiple products based on common product platform that are deployed worldwide
in banknote printing, central banks, cash-in-transit centers, casinos, etc

• Each processes millions of banknotes/day 24/7 & is configurable for any currency
• Complex mixed HW/SW system including real-time SW, image processing,

embedded control SW, highly concurrent processes, databases, etc.

#UCAATTesting of Trustworthy Systems

How we develop & test

(PO)

(SM)

(Dev & Test)

days

min

Continuous
Integration (CI)

System

Subsystem

Unit

#UCAATTesting of Trustworthy Systems

Where we came from

• One automation tester per product to analyze all
nightly results for a subsystem

• Our DevOps tool (only) providing a high-level
overview of nightly test results

• Automatic tests … but for every test failure manual
textual log & screenshot analysis necessary

• Analysis results should be ready every day in time for
daily at 9 am

• The more failed tests, the more time required .. the
greater the pressure to have these results in time!

This feeling: “Didn’t I [just] see this [pattern] before?!”

#UCAATTesting of Trustworthy Systems

What we did: Automate our log analysis!

Test System SUT Simulator

Analyzer

REPO

Link to a more detailed presentation

https://drive.google.com/file/d/1ASCYOdMfWQPw69QbTYfyF284hnzf6GXp/view?usp=sharing

#UCAATTesting of Trustworthy Systems

HOWEVER …

• Fellow automation testers working with other products
(same product line) also analyze “the same logs”

• MANUAL system TEST, engineering acceptance test,
customer acceptance test, etc … also analyze “the
same logs” to identify issues!

• FIELD ENGINEERS at customer sites also analyze “the
same logs” to identify issues!

• Even SW DEV also analyzes “the same logs” supplied
by the support helpdesk to identify issues!

Support

“You never analyze alone”!

#UCAATTesting of Trustworthy Systems

So what would be our potential benefits?

• Build up knowledge once and reuse it everywhere!
• Save multiple testers & developers etc from building & applying

the same analysis definition in their head & needing to remember it!

• System test regularly calls a subsystem expert to physically come to the lab to help
them understand why the subsystem is not co-operating

• What is his first question when he arrives?
• Capture the subsystem expert’s knowledge & save him a couple of trips!
• Imagine this situation during Corona ..

• Benefits start already way before concrete problems are identified
• DEV often gets incomplete information from customers through support, leading to

multiple iterations before actual log analysis can start
• Not everyone needs to know how to write analysis definitions but everyone can click a

button to get automatic findings, so get the helpdesk to identify automatically missing
log information!

Can you
show me
the logs?

#UCAATTesting of Trustworthy Systems

Well – but is it actually so straight forward?

Automatic Test Manual Test Logs from Support

SUT configuration Fixed Usually fixed Not reliably known

Details of SUT interaction Documented “Known” by tester Not reliably known

Verdicts Intermediate & final Only final -

Logs content Exactly one
scenario

One or more
scenarios Production use

Ability to rerun scenario Generally Often Not likely

Need to re-analyze scenario Every day Every release Once

Difficulty to automate
analysis Low Medium Medium/High

#UCAATTesting of Trustworthy Systems

System level analysis challenges

• Already simple examples with multi scenario logs show that risk of getting false negatives
rises sharply

• With our automatic tests we have so far not observed any false negatives (= patterns not
catching problems in logs) – even though at least in theory there is a risk

• In general: a “pollution” of findings for the scenario of interest by other scenarios in the logs!

• Alignment of parallel SUT component logs is not trivial since time settings often differ

• In general: Understanding operation across (parallel) SUT components is challenging!

coordination log evaluation log

SENSOR ERROR!
Process banknotes
…

…

Process banknotes
Emergency stop!

SENSOR ERROR!

Test 1
Test 2

ok

problem!

…

…if SENSOR ERROR and
not Emergency stop!

then
Banknote evaluation problem!

My analysis definition

#UCAATTesting of Trustworthy Systems

Idea: Steer analysis via log visualization

• Visualize key events of SUT component logs on normalized time scale and then run
analysis only on a selected window of interest

• Reuse ideas & concepts from recent CI server usage visualization proof of concept

nightly job

Failed test run

results for selected time window

graphical
overlay of
event info

#UCAATTesting of Trustworthy Systems

Conclusions

• Automatic log analysis from subsystem testing can also be reused for logs from
manual system test or even customers … but a bit more user support is required!

• Analysis of automatic test results turned out to be much easier since logs are
generated repeatedly for fixed scenarios within a highly controlled environment

• In logs produced from manual test or operation the first interest is “what was (really)
done?” and “where is my time window of interest which I should analyze?”

• Applying log analysis at system level showed clearly an increase in analysis
complexity due to more logs, more log dependencies and more parallelism

• A visualization of major events across all log data over normalized time is needed to be
able to work effectively in our system test

#UCAATTesting of Trustworthy Systems

About our tools (ALL NOT COMMERCIAL!)

• G+D Log Analyzer - contact us if you are eager to do this yourself!
• Compile time 1 second, EXE size 140 KB,

requires only .NET Runtime 4.5
• First version implemented by a tester with DEV

background in just two sprints
• Hints for performance optimizations

• By default analyze only failed tests
• Open and parse each file only once, i.e., apply all relevant analysis steps
• Parse files in zip archives „in place“ without extracting them into the file system
• Stop executing an analysis as soon as one of its steps fails

• G+D Agent Usage Viewer – contact us if you are eager to do this yourself!
• First version implemented with similar effort
• Based on the amazing open source .NET library

https://scottplot.net

https://scottplot.net/

Any further questions?
Stephan.Schulz@gi-de.com

Graham.Rawlings@gi-de.com

mailto:Stephan.Schulz@gi-de.com
mailto:Graham.Rawlings@gi-de.com

#UCAATTesting of Trustworthy Systems

Key failure pattern concepts

zip – Expression specifying zip archive(s) in which to search for log files

file – Expression specifying log file(s) to be searched

startPattern, endPattern – Define text blocks to be searched within a file

blocksToSearch – Identifies text blocks to apply the searchPattern to (First, Last, All)

searchPattern – Defines text pattern to search for (within a text block)

continueIf – Analysis step succeeds if searchPattern/file/zip is found or not found

description – Finding if all analysis steps succeed

references – (past) failure reports, for example a bug work item ID

Analysis Step

tags – classification(s) of finding

#UCAATTesting of Trustworthy Systems

Example analysis definition

text block definition & processing

NOTE: XML is here just one example for a format … web form could be another!

#UCAATTesting of Trustworthy Systems

Example generated findings from CI

X = test case failed, ??? = (still) unknown problem

	Automatic log analysis: Expert knowledge for everyone!
	What we test at G+D Currency Technology
	How we develop & test
	Where we came from
	What we did: Automate our log analysis!
	HOWEVER …
	So what would be our potential benefits?
	Well – but is it actually so straight forward?
	System level analysis challenges
	Idea: Steer analysis via log visualization
	Conclusions
	About our tools (ALL NOT COMMERCIAL!)
	Stephan.Schulz@gi-de.com�Graham.Rawlings@gi-de.com �
	Key failure pattern concepts
	Example analysis definition
	Example generated findings from CI

