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Who are we?

® Albert Negura
® Software Engineer, Navinfo Europe B.V., Eindhoven, Netherlands

® Kobus Grobler
® Software Engineer, Navinfo Europe B.V., Eindhoven, Netherland

@® Adversarial robustness testing MLOps platform - GuardAl
® Adversarial machine learning for validation and testing Al models

® Focus on computer vision (automotive) use cases
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Outline

® Vulnerabilities of Al models
® Adversarial Robustness — Security and Trustworthiness of Al Models
® Testing Coverage

® Practical considerations

Testing of Trustworthy Systems HUCAAT




gth
Vulnerabilities of Al Models UCAAT S

“fﬁj: Poisoning / Inference
‘

Hacker Goals: =S
Data

® Steal training data - —

® Steal model performance [ weights I
® Create a backdoor in model inference @, EStrCion |
Al Model ol J*

® Fool the model's decision making

¥

Evasion

Decision >

|
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Vulnerabilities of Al Models

9

th

Models were shown to be vulnerable to (evasion) attacks.
Consequences:

@® Detecting vehicles

Original Perturbation (49x zoom) Perturbed image

Wt iodal mses (bebigh) What model sees (attacked)

Testing of Trustworthy Systems
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Vulnerabilities of Al Models

Models were shown to be vulnerable to (evasion) attacks.
Consequences:

@® Traffic sign detection

What model sees:

Added
perturbation at
Label: Stop 150x Magnification Label: No Stopping
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Vulnerabilities of Al Models

Models were shown to be vulnerable to (evasion) attacks.
Consequences:

® Production line faults

Expected

Added

perturbation at 20x What the model sees
Magnification

Bergmann P. et al. (2021) : The MVTec Anomaly Detection Dataset: A Comprehensive
Real-World Dataset for Unsupervised Anomaly Detection

' Testing of Trustworthy Sy'gtems #UCAAT
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Vulnerabilities of Al Models UCAAT S

Models were shown to be vulnerable to (evasion) attacks.
Consequences:

@ Sentiment analysis providing incorrect (costly) conclusions

| Bought several cans of dog food. Found ]

these to be good quality products, our
labrador appreciates this to other products. 1

Bought several cans of dog food. Found these to
be good quality products, our labrador

Bought several cans of dog food. Found these to
be {goed)equitable quality products, our

HUCAAT
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Vulnerabilities of Al Models UCAAT S

Models were shown to be vulnerable to (evasion) attacks.
Consequences:

® Bypass medical diagnosis

® Keywords to trick email spam filters
® Evade ML-based malware detection
® And soon..

HUCAAT
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Vulnerabilities of Al Models

But are these practical?

Kumar, R.S.S. et al. (2020). Adversarial Machine Learning - Industry Perspective

Which attack would affect your org the most? Distribution
Poisoning 10
Model Stealing
Model Inversion
Backdoored ML
Membership Inference
Adversarial Examples
Reprogramming ML System

7]

Adversarial Example in the Physical Domain
Malicious ML provider recovering training data
Attacking the ML supply chain
Exploit Software Dependencies

S| O D S| DIy W] s

® Printable patch attacks (T-shirts, masks, shapes in specific positions)

@ Transferable attacks (exploiting vulnerabilities to learned features, evasion
attacks on extracted model)

HUCAAT
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Adversarial Robustness

HOW tO medasu re? Retrain if
hecessary | bt M | _
Q

@® Traditionally: Loss in performance vs
distortion vs perceptibility (zero-knowledge, | FiSpans s
full-knowledge scenarios) Monitor @ N

® Realistically: Adversarially-valid examples é

Train
have unique features — no one-size-fits-all §
attack per scenario; need to test over entire D‘"ﬁ'“" | :
space of adversarial attacks applicable to Pasié%’?ifr'f‘c_iﬁiiéhié‘ TR :

ope criteria
vulnerability case
Evaluate ,
* * Add defenses, adjust

architecture and |
Adversarial ‘ training procedure !

Testing ’
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Adversarial Test Coverage UCAAT —

Robustness measurements require annotated data

Annotated data can be expensive to obtain — can we measure robustness in
an online fashion?

Real rropusitnessiPGl:f)rLiinf

Annotated vs
unannotated data gap

10 A1

0.8 1

06 {Unannotated Test| | Annotated Test |
=%= AR (0, 100) =®— RR (0, 100)

o
g," *= AR (0, 200) &~ RR (0, 200)
04" AR(0,300)  —®~ RR(0,300)
-%= AR (0,500) == RR (0, 500)
-%=- AR (0,600) —®— RR (0, 600)
-%= AR(0,700) = RR (0, 700)
02 1 AR (0, 1000) —*- RR (0, 1000) \
-%~ AR (0, - R (0, . .,
VOO TR0 e stprtnion '
004 -*- AR(0,2000) —®— RR (0, 2000)
10-2 10-4 10-° 102 10-! 10°
Epsilon
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Adversarial Test Coverage UCAAT —

Task Minimum samples needed for | Minimum samples needed for
Zero Knowledge Attacks Full Knowledge Attacks
Image Classification ~300 (3% of validation size) ~100 (1% of validation size)
Sergggfn“é;i’;zfn”ce ~600 (20% of validation size) | ~B00 (20% of validation size)
Object Detection and ~300 (12% of validation size) | ~100 (4% of validation size)
Depth Estimation ~300 (15% of validation size) | ~300 (15% of validation size)
Sentiment Analysis ~600 (30% of validation size) | ~200 (10% of validation size)

® Results are just examples for specific datasets/models used
® Models used similar backbones and training procedure (Resnet50)
® Attacks: FGSM, PGD, Deepfool, SImBA, Square Attack (image), Boundary Attack

HUCAAT




Practical considerations
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Difficult to generalize adversarial attacks

—»|

Single-Modal

—>|

Data Modality

Y

Multi-Modal

Cross-Modal

Adversarial Attack
considerations

Y

Adversarial Criteria

« Printability

« Perceptibility

« Distortion Bounds

« Target domain

« Attacked model
architectures

Targeted

|

Specificity of Attack

h 4

Untargeted

L3

Parameterization

Hyperparameter
Optimization

Attack is very perceptible without
good adversarial criteria

Perturbation (x8)

Benign

Square attack

Input image Estimated depth map

Classes Band C

Yamanaka, K. et al. (2020). Adversarial Patch Attacks on
Monocular Depth Estimation Networks

mioU: 0.4467
SSIM: 0.7072

mioU: 0.9594

HUCAAT




Practical considerations

Different frameworks

#UCAAT
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Practical considerations UCAAT —

Different dataset formats

A
Root
F <annotation>
<folder>Kangaroo</folder>
<filename>00001.jpg</filename>
= *annotations”: [ <path>. /Kangaroo/stock-12.jpg</path>
{ <source>
"segmentation”: [[510.66,423.01,511.72,420.03,...,510.45,423.01]], <database>Kangaroo</database>
1 “area": 702.1057499999998,
1001.jpg </souzce>
"image_id": 289343, <size>
"bbox": [473.67,395.93,38.65,28.671, <width>450</width>
:;:Eggory,ld‘ﬁ 18, <height>319</height>
. id": 1768 <depth>3</depth>
s </size>
{ <segmented>0</segmented>
T "segmentation": {
1002Jpg "counts": [179,27,392,41,..,55,20], <object>
"size": [426,640] <name>kangaroo</name>
<pose>Unspecified</pose>
20834, <truncated>0</truncated>
e S3sam2, <difficult>0</difficult>
) [0,34,639,388], <bndbox>
gory id": 1, <xmin>233</xmin>
1 900100250282 <ymin>89</ymin>
) ¥ <xmax>386</xmax>
> <ymax>262</ymax>
</bndbox>
</object>
</annotation>
annotations.yaml

Different Folder Structures Different Annotations

Testing of Trt HUCAAT
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Practical considerations

Multiple metrics

Robustness PGDLinf

10 = Metric Harmonic robustness
‘-Tf!!$
fa Attack report Attacked Robustness-attacked Attacked
. 0
0.6 Imagenet Imagenet
o —#- AR{0.100) ||-& RR(0,100) Square Attack Test 8 1.08086 099120 093163
N —#- AR(0,200) —e— RR (D, 200)
0.4 | —%- AR(0,300) —e— RR(0,300) Project: 105
-#- AR (0,500) —e~ RR (D, 500)
—#- AR (0, 600) —8— RR (0, 600)
-#- AR (0,700)  —e~ RR (0, 700)
0.2 ) o
AR (0, 1000) RR (0, 1000) v
-#- AR (0,1200) —e~ RR (0, 1200)
AR (0. 1500) RR (0, 1500) Square Attack Test 7 0.30861 0.18246 0.00851
0.0 | —«- AR (0,2000) —e RR (0, 2000) - -
Project: 105 Dat tat 2
1073 107* 1073 1072 101 10° t
Epsilon
Robustness PGDLinf @
v
Lo _'*E*"”*ﬁz,& Cifar100 Cifar100
S&S% —%=- AR (0, 100) —e~ RR (0, 100) Square Attack Test 6 0.30861 0.18246 0.00873
Sy -#- AR(0,200) —®— RR (0, 200) Project: 105 >
038 \\&‘\ —-%- AR (0,300) ~—8— RR (0, 300)
N —#- AR(0,500) —e— RR (0, 500)
—#- AR(0,600) —e— RR(0, 600)
0.6 —#- AR(0,700) _—e— RR (0, 700) (i)
- v
AR (0, 1000) RR (0, 1000)
In) AR (0,1200) —e— RR (0, 1200)
AR (0, 1500) RR (0, 1500) Square Attack Test 5 0.24488 0.51766 0.59448
0.4 —%- AR (0, 2000) —#— RR (0, 2000) Project: 105
0.2
0.0
1073 107* 1073 1072 101 10°
Epsilon
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Practical considerations
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Training system

Storage and
preprocessing

ML
system

Co

. Adversarial (Evasion)
Model InPUtS Entry Point

Prediction

system Serving system

Offline Online

Labelling 5 Production
system | data

Model
predictions

*‘ #
Testing of Trustworthy Systems

#UCAAT



Testing methodology UCAAT —

Integrate robustness testing into the model development pipeline

® Use a platform that works with existing CI/CD systems. Basic requirements:
@® Exposes an APl to enable automation

Definition of test pass/fail criteria based on a single robustness metric

Enables parameterization of attacks and noises

Generation of adversarial samples

Definition of custom transforms to ease dataset matching with model inputs

Visualization

©® © ®©® ®@ @©

HUCAAT




Any further questions?

Contact us:

albert.negura@navinfo.eu  https://linkedin.com/in/albert-negura

kobus.grobler@navinfo.eu  https://linkedin.com/in/kobus-grobler
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