

Automating Adversarial Robustness Testing of DNN Models

Presented by: Albert Negura

14/09/2022

Who are we?

- Albert Negura
 - Software Engineer, NavInfo Europe B.V., Eindhoven, Netherlands
- Kobus Grobler
 - Software Engineer, NavInfo Europe B.V., Eindhoven, Netherland
- Adversarial robustness testing MLOps platform GuardAI
- Adversarial machine learning for validation and testing AI models
- Focus on computer vision (automotive) use cases

- Vulnerabilities of AI models
- Adversarial Robustness Security and Trustworthiness of Al Models
- Testing Coverage
- Practical considerations

Testing of Trustworthy System

Testing of Trustworthy Systems

Vulnerabilities of AI Models

Hacker Goals:

ETS

- Steal training data
- Steal model performance / weights
- Create a backdoor in model inference
- Fool the model's decision making

#UCAAT

Vulnerabilities of AI Models

Models were shown to be vulnerable to (evasion) attacks.

Consequences:

Detecting vehicles

Vulnerabilities of Al Models

Models were shown to be vulnerable to (evasion) attacks.

Consequences:

Traffic sign detection

Vulnerabilities of AI Models

Models were shown to be vulnerable to (evasion) attacks.

Consequences:

Production line faults

Bergmann P. et al. (2021) : The MVTec Anomaly Detection Dataset: A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection

Models were shown to be vulnerable to (evasion) attacks.

Consequences:

Sentiment analysis providing incorrect (costly) conclusions

#UCAAT

Models were shown to be vulnerable to (evasion) attacks.

Consequences:

- Bypass medical diagnosis
- Keywords to trick email spam filters
- Evade ML-based malware detection
- And so on...

#UCAA

But are these practical?

Kumar, R.S.S. et al. (2020). Adversarial Machine Learning - Industry Perspective		
Which attack would affect your org the most?	Distribution	
Poisoning	10	
Model Stealing	6	
Model Inversion	4	
Backdoored ML	4	
Membership Inference	3	
Adversarial Examples	2	
Reprogramming ML System	0	
Adversarial Example in the Physical Domain	0	
Malicious ML provider recovering training data	0	
Attacking the ML supply chain	0	
Exploit Software Dependencies	0	

- Printable patch attacks (T-shirts, masks, shapes in specific positions)
- Transferable attacks (exploiting vulnerabilities to learned features, evasion attacks on extracted model)

Realistically: Adversarially-valid examples have unique features – no one-size-fits-all

attack per scenario; need to test over entire space of adversarial attacks applicable to vulnerability case

Adversarial Robustness

 Traditionally: Loss in performance vs distortion vs perceptibility (zero-knowledge, full-knowledge scenarios)

Retrain if

#UCAAT

Robustness measurements require annotated data

Annotated data can be expensive to obtain \rightarrow can we measure robustness in an online fashion?

ETS

#UCAAT

Task	Minimum samples needed for Zero Knowledge Attacks	Minimum samples needed for Full Knowledge Attacks
Image Classification	~300 (3% of validation size)	~100 (1% of validation size)
Semantic / Instance Segmentation	~600 (20% of validation size)	~600 (20% of validation size)
Object Detection and Localization	~300 (12% of validation size)	~100 (4% of validation size)
Depth Estimation	~300 (15% of validation size)	~300 (15% of validation size)
Sentiment Analysis	~600 (30% of validation size)	~200 (10% of validation size)

- Results are just examples for specific datasets/models used
- Models used similar backbones and training procedure (Resnet50)
- Attacks: FGSM, PGD, Deepfool, SimBA, Square Attack (image), Boundary Attack

Testing of Trustworthy Systems

#UCAAT

Different frameworks

Different dataset formats

Different Folder Structures

Different Annotations

Multiple metrics

 10^{-3}

Epsilon

10-2

 10^{-4}

 10^{-5}

 10^{-1}

100

Testing methodology

Integrate robustness testing into the model development pipeline

- Use a platform that works with existing CI/CD systems. Basic requirements:
 - Exposes an API to enable automation
 - Definition of test pass/fail criteria based on a single robustness metric
 - Enables parameterization of attacks and noises
 - Generation of adversarial samples
 - Definition of custom transforms to ease dataset matching with model inputs
 - Visualization

Any further questions?

Contact us:

albert.negura@navinfo.eu

kobus.grobler@navinfo.eu

https://linkedin.com/in/albert-negura

https://linkedin.com/in/kobus-grobler

