

Identifying and Classifying Uncertainties to support Testing of Industrial Elevators

Presenter: Tao Yue (tao@simula.no)

Simula Research Laboratory, Oslo, Norway

14 Sep. 2022

simula

Tecting of Tructworthy Suc

Testing of Trustworthy Systems

Elevate

SiL testing

Orona

- Performance analysis
- Simulation with visual display

Orona

Building, elevator and passenger data

What uncertainties do elevators face?

#UCAAT

- > Safety
- Quality of service (QoS)

≻ ...

Develop and maintain elevators

no (hreiminisee) 00:02:43 Direction

AWT (s) ATT (s)	8.8 18.6	Position (m) Speed (m/s) Load (kg)	0.00 0.00 0	22.80 0.00 0	0.02 0.13 0
Floor	People	Landing	Car	Car	Car
Maine	waiting	Galls		-	9
Level 8	0	122		-	
Level 7	0	122			
Level 6	0				
Level 5	0	323			
Level 4	0	100			
Level 3	0	122			
Level 2	1	*	_		14
Level 1	0	121			

Uncertainties

Hardware

 \geq

...

> Start delay

Door dwell

Passenger

- > Attributes (e.g., Mass)
- Behaviors (e.g., Arrival, Loading and Unloading)

Rush to an elevator

Uncertain destination

Block the door

How to **cost-effectively** test elevators in the presence of **uncertainties** to ensure their **dependability**?

Practices and Challenges

Practices

- SiL testing with Elevate manually
- Fixed passenger attributes (e.g., mass)
- Lack of testing of SUT under uncertainty

Challenges

- Automate SiL Simuloop
- Classify passenger uncertainties RuCynefin
- Search and RL based testing of elevators under uncertainty GAIELE & GAOELE & RLOELE

Testing of Trustworthy Systems

Our SiL-based Methods

ETSI

Testing of Trustworthy Systems

SiL with Elevate

Simuloop: Automate SiL

Our SiL-based Methods

ETSI

Testing of Trustworthy Systems

Cynefin: Decision Making under Uncertainty

Sketch of the Cynefin framework, by Edwin Stoop

Testing of Trustworthy Systems

Testing of Trustworthy Systems

9th UCAAT

The 90 dispatchers exhibit diverse robustness in terms of dealing with uncertainties.

Testing of Trustworthy Systems

CAAT

- AWT and ATD are impacted relatively less by uncertainties.
- Recommend to optimize a dispatcher's robustness under uncertainties with respect to a particular QoS of interest.

Testing of Trustworthy Systems

9th

Different uncertain factors have different extents of impact on the robustness of the dispatchers.

9th

Capacity Factor, Mass and their interaction have relatively higher impact on the dispatchers' robustness than the other uncertain factors.

#1 usC #2 usL #3 usM #4 usU #5 usC-L #6 usC-U #7 usL-U #8 usM-C #9 usM-L #10 usM-U #11 usC-L-U #12 usM-C-L #13 usM-C-U #14 usM-L-U #15 usM-C-L-U

Provide feedback on which QoS against which uncertain situation should be prioritized for optimization.

E.g., focus on LTD when facing uncertainties caused by Capacity Factor itself or its interactions with Mass.

Testing of Trustworthy Systems

CAAT

Our SiL-based Methods

ETSI

Testing of Trustworthy Systems

GAiEle: Search-based SiL testing

GAiEle generates passengers with specific attributes during SiL, for a given traffic profile, with GA, with the aim of maximizing AWT of passengers.

Empirical study:

ETSI

Testing of Trustworthy Systems

GAoEle: Search-based SiL testing

Objective: maximize AWT of passengers

Difference with GAiEle:

- load standard profile at the beginning
- change all passengers at each generation
- outside of Elevate, not extra engineering work

Empirical study:

Attribute	GA	Mass	Cap.	Load.	Unload.	All
Mass (kg)	Х	90	х	х	х	90
Cap Fac. Mass (%)	x	х	75	х	х	75
Loading time (s)	х	х	х	2	х	2
Unloading time (s)	х	х	х	х	2	2
AWT(s)	44.5	40.3	39.0	34.0	30.3	34.5

RLoEle: Reinforcement learning based SiL Testing

Environment

- Building configuration
- Elevator setup

State

 Elevator and passenger positions and directions

Action

 Assign arrival and destination floors

Reward

> AWT

ETSI

9th

Summary and Outlook Follow-Up Works

- Industrial validation and technology transfer
- Generalize to other domains, e.g., train control

#UCAAT

This work is supported by the **Adeptness** project funded by the European Union' s Horizon 2020 programme. We thank **Orona** for providing us with industrial elevator dispatchers to perform this case study. We thank **Shaukat Ali, Liping Han, Joritz Galarraga, and Torbjørn Ruud** for their contributions to the work.

Identifying and Classifying Uncertainties to support Testing of Industrial Elevators

Presenter: Tao Yue (tao@simula.no)

Simula Research Laboratory, Oslo, Norway

14 Sep. 2022

simula

RLoEle: Reinforcement learning **based SiL Testing**

agent

Environment

- Building configuration \geq
- Elevator setup \geq

State

Elevator and passenger positions and directions

Action

Assign arrival and destination floors

Reward

> AWT

#UCAAT

ETSI

RLoEle: Reinforcement learning based SiL Testing

#UCAAT

Most models were converged after 1000 cycles.

Given a floor height and a direction, it is straightforward to conclude which action to select.

