

Interim Report, IEEE Working Group 982.1, Measures of the Software Aspects of Dependability

Robert V. Binder

Chair, IEEE 982.1 Working Group

09/14/2022

Overview

982.1-202x Measures of the Software Aspects of Dependability

IEEE – Institute of Electrical and Electronics Engineers https://ieee.org

Background

- Motivation
- Goals
- Work to date
- Changes and improvements

Key questions

- What is Dependability?
- How is it different than ...
- Can it be measured?
- Pre- versus post-release?

This presentation is snapshot of work in progress. All concepts, terms, etc. are subject to change.

Gül Boztok Algin Christie Bahn Trac Bannon Pieter Botman Lynn Robert Carter Sigrid Eldh Lance Fiondella Michael Grottke Lou Gullo Jon Hagar Pratap Lakshman Rajesh Murthy Joanna Olszewska Annette Reilly Rob Schaaf Sinem Getir Yaman

What the process seemed like to me

#UCAA

An ideal definition would make it possible to answer questions like

- Is system X more dependable than system Y?
- How has system X's dependability changed over time?
- What can we do to make system X more (less) dependable?
- How do we know system X is dependable?

Such a definition should make clear how dependability is different from:

- Trustworthiness
- Safety

ETS

Security

IEEE 982.1-2005 defines *Dependability* as

[The] trustworthiness of a computer system such that reliance can be justifiably placed on the service it delivers. Reliability, availability, and maintainability are aspects of dependability. (adapted from Lyu [B12])

982.1-2005, IEEE Standard Dictionary of Measures of the Software Aspects of Dependability

 Owing to ambiguities and the circularity of this definition, and to support international harmonization, the 982.1 working group is considering adopting the IEC definition.

dependability, < of an item >: ability to perform as and when required

Note 1 to entry: Dependability includes availability (192-01-23), reliability (192-01-24), recoverability (192-01-25), maintainability (192-01-27), and maintenance support performance (192-01-29), and, in some cases, other characteristics such as durability (192-01-21), safety and security.

Note 2 to entry: Dependability is used as a collective term for the timerelated quality characteristics of an item (emphasis added)

IEC 60050-192:2015, International Electrotechnical Vocabulary (IEV) - Part 192: Dependability

Recall the key questions:

- 1) Is system X more dependable than system Y?
- 2) How has system X's dependability changed over time?

3) What can we do to make system X more (less) dependable?

4) How do we know system X is dependable?

Neither definition of Dependability can provide a concise answer

- Both definitions are *rubrics* neither defines Dependability as a measureable quality attribute.
- Why can't we quantify Dependability?

Can Dependability be Quantified?

ETSI

#UCAA

A Duty Cycle model was developed to experiment with quantification

Basic idea: set a budget for total cycle time and time to spend in each mode. Use the ratio of mode time to total cycle time as the weight for the corresponding quality attribute.

	Maintainability				OFFLINE	READY	ACTIVE	Total
a Desigr		vailability	Interval (1 year)	hrs				8760.0
	ev & Normal		Operational Budget	hrs	120	7688	952	8760.0
Abandon			Dependability Threshold		0.90000	0.99999	0.99000	
	Uninstall Hard Crash Stack Fail Active	Acceptable Response	Anti-D Tolerance		0.1	0.00001	0.01	
Decommission			Dependability Threshold,	hrs	108.0	7687.9	942.5	8738.4
)←	Dependability Budget		1.233%	87.762%	10.759%	
Zombie	Restart	Anomalous Response	D-Factor Weight		1.370%	87.763%	10.868%	100.000%
Tresponse	- Description							
L(Ω)	(Recovery) Recovery	Doliobility	Actual Hours	hrs	300	7570	890	8760
		Reliability	Actual MAR Metric		?	0.98466	0.94432	
Ĩ	Soft							

Can Dependability be Quantified?

9th UCAAT

#UCAA

In a word, No.

Problems

- Variability and scale of development ("big" M) confounds results
- Use "small" *m*, limited to file refresh without upstream effort?
- Restrict model to availability and reliability?

...a weighted average approach lacks statistical meaning. Specifically, there is no textbook method by which one can compute variance, confidence intervals, or related statistical inferences for these metrics. - WG member comment

A *Quality Attribute* is a property of a tangible object that may be measured using an *Operational Definition*.

• Availability and Reliability are measurable quality attributes.

A *Quality Outcome* is a result defined with one or more quality attributes.

- It is an abstract category for characterizing related system effects that have practical importance to interested parties.
- Typically not quantifiable.

When, As, and Operating Conditions

"Dependabi	ility is	Functionality	Safety	Security
perform as when requi	and ired″	maintainable Available Correct,	Intended use does not harm interested parties	No data spills Hack resistant Tamper resistant
		Resilient		•••
	Nominal	*	\checkmark	\checkmark
VVHEN	Off-Nominal	*	\checkmark	\checkmark
Operating Conditions	Malicious	\checkmark	*	*
	Degraded	?	*	*
			γ	

AS – required behavior in test or field

Testing of Trustworthy Systems

All Quality Outcomes derived from same primary data sources

SOI – System of Interest

Pre-release analysis and prognostication

Testing of Trustworthy Systems

Post-release Monitoring

9th

ETSI

Testing of Trustworthy Systems

Towards Comparing Dependabilities

Testing of Trustworthy Systems

982.1 Working Group highlights to date

- Leaning towards IEC "ability to perform as and when required"
 - "As" measureable quality attributes with threshold and target values
 - When" typical and adverse operational profiles
- Introduced the idea of a "Quality Outcome" to distinguish abstract categories from measurable properties.
 - Dependability is a Quality Outcome
 - Quality *Outcomes* bundle quantity attributes
- "Little *m*" Maintainability (field updates, no-code re-configuration)
- Operational profiles for typical and adverse conditions are necessary for adequate assessment of pre-release dependability
- A common data model for pre- and post-release items will facilitate devops performance

This presentation is snapshot of work in progress.

All concepts, terms, etc. are subject to change.

What the process seems like now

THE TRUTH IS OUT THERE

Thank you! Any questions?

rbinder@ieee.org

