
Shreyasi Warunkar, Baris Güldali

15/09/2022

Systematic Selection of 
Testing Methodology for 
Low-Code Development 



#UCAATTesting of Trustworthy Systems

Introduction

Low-Code Development & Testing
What is Low-Code? 
Testing Low-Code applications

Complexity of Low-Code applications
Case studies
Complexity characteristics

Test Methodology for Low-Code



#UCAATTesting of Trustworthy Systems

Low-Code Development & Testing

Data Modeling

User Interface Design

Specification of busines logic
rules and workflows

Integration of external 
services via third-party APIs

Application Deployment

What is Low-Code? 
Testing Low-Code applications



#UCAATTesting of Trustworthy Systems

Complexity of Low-Code applications
Case studies selected = 100 (Outsystems = 50, Mendix = 50)
Cases from variety of application domains –
Healthcare, Finance, Logistics, Insurance, Government, NGO, IT etc.
Complexity characteristics:

Application type 
Time to develop 
Need of training 
Integrations with other systems
Scalable 
Safety critical 
Customized 
Testing/QA mentioned 
Agile methodology incorporated

Source: https://www.featuredcustomers.com/
https://www.outsystems.com/case-studies/
https://www.mendix.com/customer-stories/

https://www.featuredcustomers.com/
https://www.outsystems.com/case-studies/
https://www.mendix.com/customer-stories/


#UCAATTesting of Trustworthy Systems

Development Time

Measured in weeks
Threshold = 12 weeks
Less than 12 weeks for 55/100
More than 12 weeks for 28/100

Assumption:
Low-Code enables faster 
application delivery (Forrester 
survey)
Assumption confirmed! 

Inference:
Less development time 
Experience-based test 
techniques
More development time 
Elaborate testing

Raquel Sanchis, ´ Oscar Garc´ıa-Perales, Francisco Fraile, and Raul Poler. Lowcode
as enabler of digital transformation in manufacturing industry. Applied Sciences, 10(1), 2020.



#UCAATTesting of Trustworthy Systems

Scalability

Yes for 76/100
Not specified for 24/100

Assumption:
Low-code applications are 
developed mostly simple, 
non-scalable.
Assumption proven wrong!

Inference:
Need of professional tester for 
performing non-functional tests.



#UCAATTesting of Trustworthy Systems

Integration with External Systems

Yes for 68/100
No for 7/100

Assumption: 
Integrations with external 
systems may be difficult with 
Low-Code
Assumption confirmed!

Inference:
There may be a need of all test levels –
unit, integration, system, acceptance.



#UCAATTesting of Trustworthy Systems

Need of Training & Agile Methodology

Yes for 19/100, No for 62/100

Assumption for need of training:
Low-Code platforms are designed 
specifically for ‘citizen developer’
Thus, most will need training.
Assumption proven wrong!

Yes for 63/100, No for 6/100

Assumption for agile methodology:
Exploratory tests can be useful to test only 
changes in each sprint.
Assumption incorrect !

Information about test artifacts –
User stories for agile methodology



#UCAATTesting of Trustworthy Systems

Other Complexity Characteristics



#UCAATTesting of Trustworthy Systems

Rule Set for Test Methodology



#UCAATTesting of Trustworthy Systems

Evaluation and next steps

Evaluation by Testing of a Low-Code Application
Digital notification board for technology center
Test methodology determined & executed (see slide 11)
Evaluation 

Tasks/Responsibilities according to training: Development by professional developer (could 
be citizen developer), testing by – citizen tester (2-man principle)
Coverage of requirements: Out of 16, 4 were not implemented & 2 are not working
Defects found: 8 Defects, 2 Usability issues, 1 Security issue found
Testing aspects covered: test levels, test types, testing techniques, test strategy, test roles and 
test artifacts.
Time for testing (TT) in proportion to time for development (TD): TT = 10% TD

Low-Code testing vs. Model-based testing
Similar scenarios identified based on need for redundancy
See master thesis for detailed scenario descriptions



Thank you
Any further questions?

Contact me:
Shreyasi.Warunkar@sn-cqm.de


	Systematic Selection of Testing Methodology for Low-Code Development 
	Introduction
	Low-Code Development & Testing
	Complexity of Low-Code applications
	Development Time
	Scalability
	Integration with External Systems
	Need of Training & Agile Methodology
	Other Complexity Characteristics
	Rule Set for Test Methodology
	Evaluation and next steps
	Contact me:�Shreyasi.Warunkar@sn-cqm.de

