

Indo-European dialogue on ICT standards & Emerging Technologies

(Growth, Profitability & Nation Building) 13-14th March 2014 • New Delhi, INDIA

IN THE FRAMEWORK OF

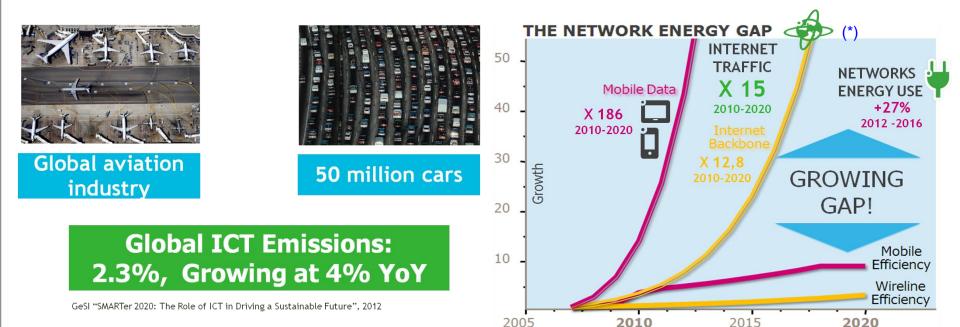
Project SESEI http://eustandards.in/

Energy efficiency of ICTs: EU initiatives and ETSI standards for its assessment

Beniamino Gorini (ETSI TC-EE chairman)

Contents

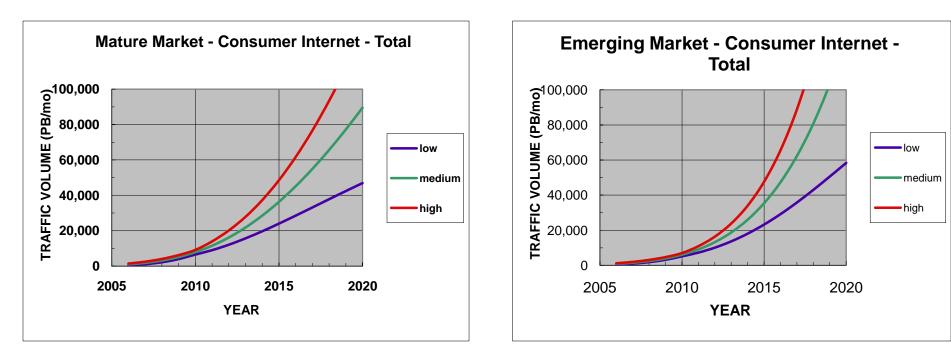
- Energy efficiency in ICT: why needed?
- EU regulations on energy efficiency of ICTs
- ETSI standards for assessment of energy efficiency
 - measurement methods of ICT products
 - measurement methods of ICT networks


ENERGY EFFICIENCY IN ICT: WHY NEEDED?

Indo-European dialogue on ICT standards & Emerging Technologies 13-14th Morth 2014 New Delbi, INDIA

Energy efficiency in ICT needs to be improved?

- Slow-down in technology improvements
- Network energy efficiency only increasing at 10-15% per year


ICT also has significant enabling effect to reduce global carbon emissions through increased and more intelligent use of communication and networking technologies

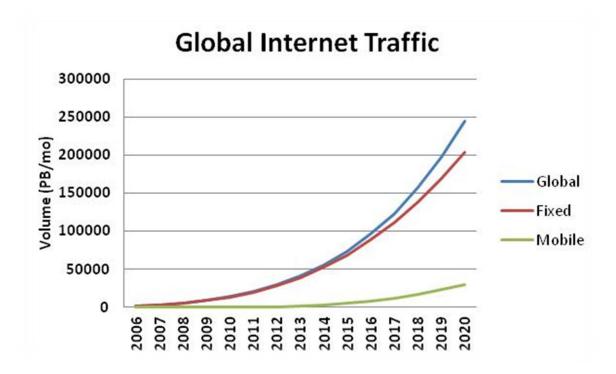
(*) GreenTouch source: http://www.greentouch.org/index.php?page=about-us

Traffic evolution, mature vs emerging markets (*)

Traffic is still growing

Emerging Market traffic is projected to cross the Mature Market around 2017.

(*) GreenTouch source: http://www.greentouch.org/index.php?page=about-us


Indo-European dialogue on ICT standards & Emerging Technologies

5

Traffic evolution, fixed vs mobile networks (*)

Internet traffic over fixed networks still dominates

Today the total volume of fixed IP traffic is ~25 times larger than the volume of mobile IP traffic

(*) GreenTouch source: http://www.greentouch.org/index.php?page=about-us

Indo-European dialogue on ICT standards & Emerging Technologies

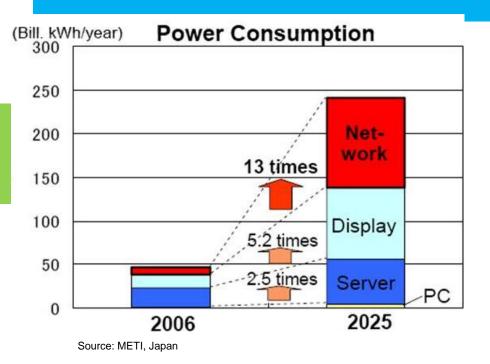
6

Evolution of power consumption in networks

Video: 70% of Internet Traffic In 2014

Mobile Internet :

Smartphones:


km2

~ 70% of mobile traffic by 2014

2.5 billion devices by

2015 32x increase per

- Network Consumption represents ~75% of the energy bill of an operator
- Between 7 to 20% of its OPEX

(*) GreenTouch source: http://www.greentouch.org/index.php?page=about-us

EU REGULATIONS ON ENERGY EFFICIENCY OF ICTs

Indo-European dialogue on ICT standards & Emerging Technologies 13-14th March 2014 New Delhi, INDIA

EU regulations and other initiatives on energy efficiency of ICTs

Regulation:

Directive 2009/125/EC (21 October 2009) on eco-design

Other initiatives:

- Mandate 462 on Standardization in the field of ICT to enable efficient energy use in fixed and mobile information and communication networks
 - End-user equipment under the scope of directive 2009/125/EC are excluded
 - Addressed to improve the energy efficiency of the provider infrastructure to counterbalance the growth in telecommunications networks
- Code of Conducts (#)
 - Energy Consumption of Broadband Communication Equipment
 - Data Centres Energy Efficiency
 - Digital TV Services
 - Efficiency of External Power Supplies
 - AC Uninterruptible Power Systems

(#) http://iet.jrc.ec.europa.eu/energyefficiency/ict-codes-conducts

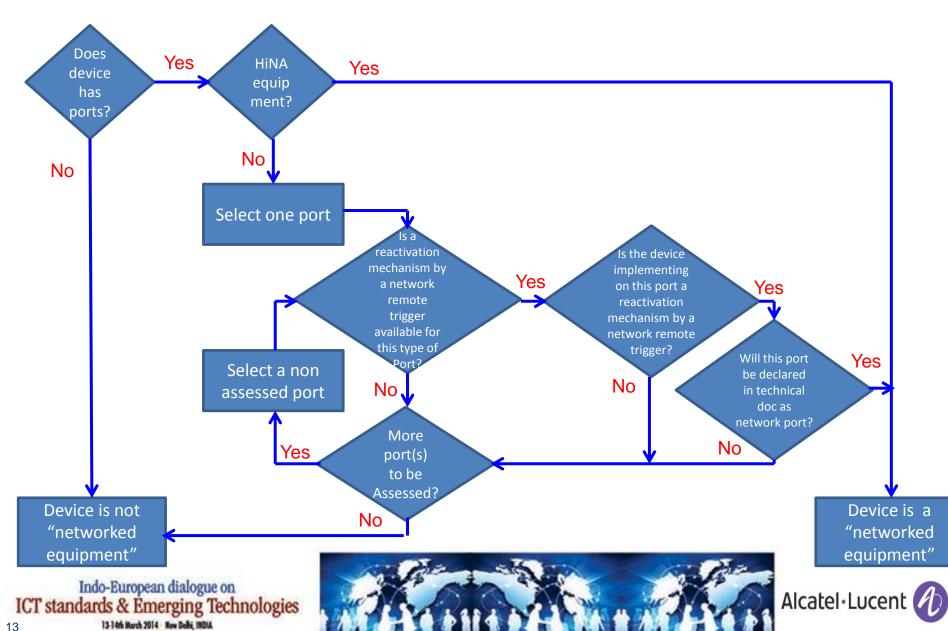
Directive 2009/125/EC (21 October 2009)

- Replacing Energy-using Products Directive 2005/32/EC of 6 July 2005
- Framework defining the «rules» for setting product-specific requirements/ legislation on energy efficiency and further parameters.
- Implementing measures affecting ICTs
 - Simple set-top boxes regulation No 107/2009
 - External power supplies regulation No 278/2009
 - Televisions regulation No 642/2009
 - Standby and Off Modes regulation No 1275/2008 (17 December 2008)
 - Networked Standby regulation No 801/2013 (22 August 2013) amending regulation No 1275/2008

Regulation No 1275/2008

- It applies to electrical and electronic household and office equipment
 - Electrical and electronic household and office equipment means any energy using product which
 - is sold as a single functional unit and is intended for the end-user
 - is dependent on energy inputs from the mains power source in order to work as intended; and
 - is designed for use with a nominal voltage rating of 250 V or below
 - Not put on the market with a low voltage external power supply
 - ★ External power supply with a nameplate output voltage < 6 Volts and a nameplate output current ≥ 550 mA
 - About ICT: "Information technology equipment intended primarily for use in the domestic environment" (typically class B equipment according to EN 55022)
- Limits from 7 January 2013:
 - 0,5 W Off mode and stand-by without display
 - 1 W stand-by with display

Regulation No 801/2013 (1/3)


- Scope remains the same or regulation No 1275/2008
- Extra requirements for networked products
- Networked products need to have power management into a network standby mode, with target limits
 - * "Network port": a wired/wireless interface of the network connection at the equipment through which the equipment can be remotely activated
 - * "Networked Equipment": equipment that has the ability to be connected to a network and has one or more network ports;
 - Three classes of products:
 - 1) HiNA: equipment with router, switch, wireless access point, VoIP phone, Video phone as main function
 - 2) Equipment with HiNA functionality: equipment that includes a router, switch, WAP as side function
 - ✤ 3) LoNA: all the rest of networked equipment
- Need to declare in test report which interfaces are network ports,

HiNA equipment = Networked equipment with <u>high network availability</u>

Regulation No 801/2013 (2/3)

Regulation No 801/2013 (3/3)

Requirements

When networked equipment is not providing its main functions and when other energy-using product(s) are not dependent on its functions, equipment shall, unless inappropriate for the intended use, offer a power management function, or a similar function, that switches equipment after the shortest possible period of time appropriate for the intended use of the equipment, <u>automatically</u> into a mode having networked standby.

Within 20 minutes

	Tier 1 (1-Jan-2015)	Tier 2 (1-Jan-2017)	Tier 3 (1-Jan-2019)
HiNA	12 W	8 W	8 W
Eq. with HiNA	12 W	8 W	8 W
LoNA	6 W	3 W	2 W

Standards to address the network stand-by mode will be produced soon

ETSI STANDARDS FOR ASSESSMENT OF ENERGY EFFICIENCY

Measurement methods of ICT products

Indo-European dialogue on ICT standards & Emerging Technologies 13-14th Morth 2014 New Delhi, INDIA

ETSI standards to determine energy efficiency of telecom products

- Well defined test methods for each type of product
 - Measurement conditions
 - Measurement uncertainty
 - Equipment configuration
 - Reporting measurements
- Specific metrics for each type of product
- Standards in support of mandate M/462

Energy Efficiency of TLC products (1/3)

Wireline Broadband Access equipment

Wireless Broadband Access equipment

ES 203 215 V1.3.1, published 10/2011

- It replaced TS 102 533
- It defines measurement methods of energy efficiency of network access equipment
- Power consumption limits are defined in informative annex
- WI started to include vectoring interfaces and test conditions of small ONU -> EN
- S TS 102 706 V1.3.1, published 07/2013
- It defines measurement and calculation methods of energy efficiency of radio base stations
- It takes into account traffic conditions
- WI started to enhance the test method in traffic conditions -> ES
- TR 103 116 V1.1.1, published 10/2012
 - It's a practical application of the TS 102 706

Energy Efficiency of TLC products (2/3)

Customer Premises equipment

Core Network equipment

Indo-European dialogue on ICT standards & Emerging Technologies EN 301 575 V1.1.1, published 5/2012

- It defines methods and test conditions to measure power consumption of end-user broadband equipment in the scope of EU regulation 1275/2008 in:
 - Off mode
 - Standby mode
- It defines also measurement method for onmode power consumption
- S 201 554 V1.1.1, published 04/2012
- It defines measurement methods for:
 - IP Multimedia Subsystem (IMS) core functions (HSS, CSCF, etc)
 - Fixed core functions (softswitch)
 - Mobile core functions (HLR, MSC, GGSN, SGSN, EPC, etc)
- Core network equipment are defined in TS 123 002
- Under revision to include Radio access control nodes (RNC, BSC)

Energy Efficiency of TLC products (3/3)

Transport Equipment

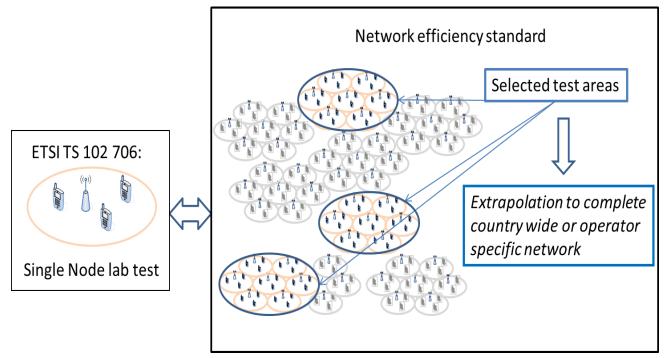
Switching and Router equipment

ES 203 184 V1.1.1, published 03/2013

- Measurement method and transport equipment configuration
- It considers work done by ATIS-NIPP TEE but more details on the tests conditions and equipment configuration are added
- Output the second se
- S 203 136 V1.1.1, published 05/2013
- Measurement method and switching/router equipment configuration
- It considers the work in ITU-T SG5 and ATIS-NIPP TEE but more details on the tests conditions and equipment configuration are added

ETSI STANDARDS FOR ASSESSMENT OF ENERGY EFFICIENCY

Measurement methods of ICT networks



Indo-European dialogue on ICT standards & Emerging Technologies 13-14th Morth 2014 New Delhi, INDIA

Energy Efficiency of Mobile Networks

- Mobile Green Manifesto 2012 (#): "mobile industry will reduce its Green House Gas (GHG) emissions per every connection by 40 % by 2020"
- ~ 80 % of the energy consumption and GHG emissions are due to networks
- ◆ Issues: complexities of energy efficiency measurements in real networks and in laboratory → TR 103 117

(#) "http://www.gsma.com/publicpolicy/wp-content/uploads/2012/06/Green-Manifesto-2012.pdf"

Energy Efficiency of Mobile Networks

- ETSI Standard (ES 203 228) on energy efficiency of mobile networks in preparation
 - Energy consumption metrics (all equipment in the network)
 - Performance metrics (traffic volume with a defined quality of service)
 - Energy efficiency metric (ratio of performance and energy consumption)
 - Measurement method
 - Assessment report content
- Work Item with ITU-T SG5/WP3 and ...
- In cooperation with 3GPP
- \clubsuit Next step \rightarrow define assessment method of entire network

Conclusions

- Global GHG emissions of ICTs is low in respect to other sources but is not negligible
- ICT world has to pay its contribution to reduce the energy consumption and provide more sustainable service
- Initiatives have been launched in Europe to address the energy efficiency of ICTs
- ETSI is actively contributing in providing reliable measurement methods to assess the energy efficiency of ICTs equipment and networks

THANK YOU!

Indo-European dialogue on ICT standards & Emerging Technologies 13-14th March 2014 New Delhi, INDIA

